In a paper that I’m just finishing up now, we want to include this 1903 photo of Carnegie Museum personnel:

A few weeks ago I asked for help on Twitter in identifying the people shown here, and I got a lot of useful contributions.

But since then I have seen the Carnegie photo library catalogue for this image (it’s #1010), and it gives names as follows:

  • Far left, mostly cropped from image: field worker William H. Utterback
  • Seated, facing right: field worked Olof A. Peterson
  • Standing at back: preparator Louis Coggeshall (Arthur’s brother)
  • Seated, looking to camera: preparator Charles W. Gilmore
  • Seated at far table: field worker Earl Douglass
  • Standing behind far table: chief preparator Arthur S. Coggeshall
  • Sitting at far table, facing left: preparator Asher W. VanKirk
  • Seated: illustrator Sydney Prentice
  • Sitting on bench: John Bell Hatcher, whose description of Diplodocus carnegii had been published two years previously

Those of you who know a bit of history, do these identifications seem good? Some of the suggestions I got align well with these, but others do not. For example, a lot of people thought that the person here identified as Louis Coggeshall was his better-known brother Arthur.

I’d appreciate any confirmation or contradiction.

Long-time readers will recall that I’m fascinated by neurocentral joints, and not merely that they exist (although they are pretty cool), but that in some vertebrae they migrate dorsally or ventrally from their typical position (see this and this).

A few years ago I learned that there is a term for the expanded bit of neural arch pedicle that contributes to the centrum in vertebrae with ventrally-migrated neurocentral joints: the bouton, which is French for ‘button’. Here’s an example in the unfused C7 of a subadult sheep. Somebody gifted me a handful of these things a few years ago, and I’ve been meaning to blog about them forever. Many thanks, mysterious benefactor. (I mean, only mysterious to me, because my memory is crap; I’m sure you know who you are, and if you ever read this, feel free to remind me. And thanks for the dead animal parts!)

Guess what? You have these things, too! Or at least you did; if you’re old enough to be reading this, your boutons fused with the rest of the separate bits of your vertebrae a long time ago, between the ages of 2 and 5 (according to Bagnall et al. 1977). Here’s a diagram from Schaefer et al. (2009: p.99) showing the separate centrum and neural arch elements in a thoracic vertebra of a human toddler. So, hey, cool, we all had boutons, just like sheep. And just like some sauropods. (You didn’t think I was going to do a whole OVATOD post without sauropods, did you?)

Here’s our old friend BIBE 45885, an unfused caudal neural arch (or perhaps neural ring) of Alamosaurus, which I’ve been freaking out over for five years now. Those fat bits of neural arch that very nearly close off the neural canal ventrally? Boutons, baby! Big, beautiful boutons. In this photo it looks like the paired boutons meet on the midline, but in fact they merely overlap from this point of view — there is a narrow (<1mm) squiggly gap between them. Given how narrow that gap is, I suspect the two boutons probably would have fused to each other before either of them fused to the centrum, if this particular animal hadn’t died first.

Here’s an unfused dorsal centrum of Giraffatitan, MB.R. 3823, which I yapped about in this post. This vertebra is the spiritual opposite of the Alamosaurus caudal shown above: instead of the neural canal being nearly enclosed by bits of the neural arch wrapping around ventrally, the neural canal is nearly enclosed dorsally by bits of the centrum sticking up on either side and wrapping around dorsally. As with the boutons of the Alamosaurus caudal, the two expanded bits of centrum stuff in this Giraffatitan dorsal approach each other very closely but don’t quite meet; you can fit a piece of paper between them, but not a heck of a lot more. In essence, those “two expanded bits of centrum stuff” are centrum boutons that project up into what I suppose we’ll keep calling a ‘neural arch’ even though it’s neither very neural nor an arch. Or perhaps anti-boutons? With apologies to Gould and Vrba (1982), here we have another missing term in the science of form.

Why do we, and sheep, and prolly lots of other mammals, and some sauropods, have boutons? Presumably to strengthen the neurocentral joints by expanding the joint surface area. I don’t know if anyone has ever tested that — if you do, please let me know in the comments.

Many thanks to Thierra Nalley, who may be the only person I know besides Mike who spends more time thinking about vertebrae than I do, for introducing me to the term ’bouton’ a few years ago. If for some reason you want to corrupt your sensibilities reading about primate vertebrae, you could do a lot worse than checking out Thierra’s papers.

I don’t expect we’ll have a ton of OVATOD posts, in part because there aren’t a heck of a lot of vertebra parts that we haven’t already blogged about. But who knows, maybe Mike will write about prepostepipophyses or something. Stay tuned!

References

  • Bagnall, K.M., Harris, P.F., and Jones, P.R.M. 1977. A radiographic study of the human fetal spine. 2. The sequence of development of ossification centers in the vertebral column. Journal of Anatomy 124(3): 791–802.
  • Gould, S.J. and Vrba, E.S. 1982. Exaptation—a missing term in the science of form. Paleobiology 8(1): 4-15.
  • Schaefer, M., Black, S., and Scheuer, L. 2009. Juvenile Osteology: A Laboratory and Field Manual. Academic Press, Burlington, MA, 369pp.

P.S. Can we all pitch in and make ’bouton’ the new ‘aglet‘? Please? Please?

Darren, the silent partner at SV-POW!, pointed me to this tweet by Duc de Vinney, displaying a tableau of “A bunch of Boners (people who study bones) Not just paleontologists, some naturalists and cryptozoologists too”, apparently commissioned by @EDGEinthewild:

As you can see, Darren, Matt and I (as well as long-time Friend Of SV-POW! Mark Witton) somehow all made it into the cartoon, ahead of numerous far more deserving people. Whatever the criterion was, and whatever reason Edge In The Wild had for wanting this, I am delighted to be included alongside the likes of Owen, Osborn, Cope, Marsh, and Bob Bakker. Even if the caricatures are not especially flattering.

Here is an edit showing only the three of us, which I am sure I will find many fruitful uses for:

My thanks to Duc de Vinney for creating this!

 

It’s been a while since we checked in on our old friends Elsevier, Springer Nature and Wiley — collectively, the big legacy publishers who still dominate scholarly publishing. Like every publisher, they have realised which way the wind is blowing, and flipped their rhetoric to pro-open access — a far cry from the days when they were hiring PR “pit bulls” to smear open access.

These days, it’s clear that open access is winning. In fact, I’ll go further: open access has won and now we’re just mopping up the remaining pockets of resistance. We’ve had our D-Day. That doesn’t mean there isn’t still lots of work to get through before we arrive at our VE-Day, but it’s coming. And the legacy publishers, having recognised that the old journal-subscriptions gravy train is coasting to a halt, are keen to get big slices of the OA pie.

Does this change in strategy reflect a change of heart in these organization?

Reader, it does not.

Just in the last few days, these three stories have come up:

Widespread outrage at the last of these has forced Wiley to back down and temporarily reinstate the missing textbooks, though only for the next eight months. It’s clear that courses which used these books will need to re-tool — hopefully by pivoting to open textbooks.

All of this tells as unwelcome truth that we just need to accept: that the big publishers are still not our friends. We must make our decisions accordingly.

Vertebrae of Haplocanthosaurus (A-C) and a giraffe (D-F) illustrating three ways of orienting a vertebra: articular surfaces vertical — or at least the caudal articular surface vertical (A and D), floor of the neural canal horizontal (B and E), and similarity in articulation (C and F). See the paper for details! Taylor and Wedel (2002: fig. 6).

This is a lovely cosmic alignment: right after the 15th anniversary of this blog, Mike and I have our 11th coauthored publication (not counting abstracts and preprints) out today.

Taylor, Michael P., and Wedel, Mathew J. 2022. What do we mean by the directions “cranial” and “caudal” on a vertebra? Journal of Paleontological Techniques 25:1-24.

This one started back in 2018, with Mike’s post, What does it mean for a vertebra to be “horizontal”? That post and subsequent posts on the same topic (one, two, three) provoked interesting discussions in the comment threads, and convinced us that there was something here worth grappling with. We gave a presentation on the topic at the 1st Palaeontological Virtual Congress that December, which we made available as a preprint, which led to us writing the paper in the open, which led to another preprint (of the paper this time, not the talk).

Orienting vertebrae with the long axis of the centrum held horizontally seems simple enough, but choosing landmarks can be surprisingly complex. Taylor and Wedel (2022 fig. 5).

This project represented some interesting watersheds for us. It was not our first time turning a series of blog posts into a paper — see our 2013 paper on neural spine bifurcation for that — but it was our first time writing a joint paper in the open (Mike had started writing the Archbishop description in the open a few months earlier). It was also the last, or at least the most recent, manuscript that we released as a preprint, although we’ve released some conference presentations as preprints since then. I’m much less interested in preprints than I used to be, for reasons explained in this post, and I think Mike sees them as rather pointless if you’re writing the paper in the open anyway, which is his standard approach these days (Mike, feel free to correct me here or in the comments if I’m mischaracterizing your position).

So, we got it submitted, we got reviews, and then…we sat on them for a while. We have both struggled in the last few years with Getting Things Done, or at least Getting Things Finished (Mike’s account, my own), and this paper suffered from that. Part of the problem is that Mike and have far too many projects going at any one time. At last count, we have about 20 joint projects in various stages of gestation, and about 11 more that we’ve admitted we’re never going to get to (our To Don’t list), and that doesn’t count our collaborations with others (like the dozen or so papers I have planned with Jessie Atterholt). We simply can’t keep so many plates spinning, and we’re both working hard at pruning our project list and saying ‘no’ to new things — or, if we do think of new projects, we try to hand them off to others as quickly and cleanly as possible.

Two different ways of looking at a Haplocanthosaurus tail vertebra. Read on for a couple of recent real-life examples. Taylor and Wedel (2022: fig. 2).

Anyway, Mike got rolling on the revisions a few months ago, and it was accepted for publication sometime in late spring or early summer, I think. Normally it would have been published in days, but the Journal of Paleontological Techniques was moving between websites and servers, and that took a while. But Mike and I were in no tearing rush, and the paper is out today, so all is well.

One of the bits of the paper that I’m most proud of is the description of cheap and easy methods for determining the orientation of the neural canal. For neural canals that are open, either because they were fully prepped or never full of matrix to begin with, there’s the rolled-up-piece-of-paper method, which I believe first appeared on the blog back when I was posting photos of the tail vertebrae of the Brachiosaurus altithorax holotype. For neural canals that aren’t open, Mike came up with the Blu-tack-and-toothpick method, as shown in Figure 12 in the new paper:

A 3d print of NHMUK PV R2095, the holotype of Xenoposeidon, illustrating the toothpick method of determining neural canal orientation. Taylor and Wedel (2022: fig. 12).

I know both methods work because I recently had occasion to use them, studying the Haplocanthosaurus holotypes (see this post). For CM 572, the neural canal of the first caudal vertebra is full of matrix, so I used a variant of the toothpick method. I didn’t actually have Blu-tack or toothpicks, so I cut thin pieces of plastic from the edge of an SVP scale bar and stuck them in bits of kneadable eraser. It worked just fine:

The neural canal of caudal 2 was prepped, so I could use the rolled-up-piece-of-paper method:

(Incidentally, Mike and I refer to our low-tech orientation-visualizers as “neural-canal-inators”, in honor of Dr. Heinz Doofenshmirtz from Phineas and Ferb.)

In the above photos, notice how terribly thin the base of the neural arch is, antero-posteriorly. Both of these vertebrae are in pretty good shape, without much breakage or missing material, and their morphology is broadly consistent with that of other proximal caudals of Haplocanthosaurus, so we can’t write this off as distortion. As weird as it looks, this is just what Haplo proximal caudals were like. And with the neural canals held horizontally, the first two caudals end up oriented like so:

Now, as we pointed out in the paper, the titular question is not about determining the posture of the vertebrae in life, it’s about defining the directions ‘cranial’ and ‘caudal’ for isolated vertebrae — Mike asked the question back when for the holotype (single) dorsal vertebra of Xenoposeidon. But an interesting spin-off for me has been getting confronted with the weirdness of vertebrae whose articular surfaces are nowhere near orthogonal with their neural canals. I tilted those CM 572 Haplo caudals so that their neural canals were horizontal partly because that’s the preferred orientation that Mike and I landed on in the course of this work, but also partly because to me, that’s a more arresting image than the preceding ones with the articular faces held vertically. I’m both freaked out and fascinated, and that seems like a promising combination — there are mysteries here that cry out to be solved.

As usual, we have loads of people to thank. In addition to all those listed in the Acknowledgments of the new paper, I’m grateful to Matt Lamanna and Amy Henrici of the Carnegie Museum of Natural History for letting me play with study the Haplo specimens in their care. Mike and I also owe a huge thanks to the editorial team at the Journal of Paleontological Techniques. We reached out to them a few days ago to ask if it might be possible to get our in-press paper done and out in time for SV-POW!’s anniversary weekend, and they pitched in to make it happen.

What’s next? We weighed the evidence and formulated what the best solution we could think of. Now it’s up to the world to decide if that was a useful contribution. The comment thread is open — let’s find out.

UPDATE: Y’all came through! I’m very happy to announce that Vicki’s scholarship is fully funded, and we’ll be able to give out the first scholarship in the spring of 2023 — and every year thereafter. Thank you, thank you, thank you!! 

When my partner, Vicki Wedel, passed away unexpectedly last year, the whole community at Western University of Health Sciences pulled around London and me. One of the most touching things that happened is that my then dean, Paula Crone, DO (now interim provost of the university), got to work right away with University Advancement to set up the Vicki Wedel PhD Memorial Scholarship:

The scholarship will be awarded to a first year WesternU College of Osteopathic Medicine of the Pacific student with a GPA of or greater than 3.0, with demonstrated financial need who excelled in first-year anatomy classes.

I’m happy to report that the scholarship is nearly fully-funded, at which point it will generate at least one scholarship for a deserving student, every year in perpetuity. We’ve had a very kind offer of a matching gift challenge: an anonymous donor will contribute matching funds to get the scholarship to full funding, if the other half of the remainder is donated by next Tuesday, September 6, which is WesternU’s annual Giving Day. At this point, we’re just a few hundred dollars short of that goal.

Other than very infrequent notices about crowdfunding projects, we don’t put any financial solicitations on this blog, but I’m making an exception in this case. It’s a good cause, to fund a scholarship to help a deserving student with demonstrated financial need pursuing medical training at a non-profit health sciences university. And it’s particularly important to me, because I knew Vicki best, and she was always actively looking for ways to support students. I had no idea how many lives she had touched until after she passed — for weeks I was receiving testimonials from students and former students that she helped and encouraged. Vicki’s memorial scholarship is special to me because I can’t think of a better way to honor her legacy.

I need to give a special thank you to Vicki’s parents, Terry and Carla Cooper, who celebrated their 50th wedding anniversary this summer. They kindly asked guests at their celebration to donate to Vicki’s scholarship fund in lieu of giving them gifts, and we’re so close to the finish line because of that act of generosity.

If you’re interested in learning more about Vicki’s memorial scholarship, please follow this link. And if you’re interested in donating, thank you, sincerely. You’ll have the option to be recognized for your donation, or to donate anonymously, whichever you prefer. Every dollar counts, and every dollar is appreciated.

If you’re reading this post sometime after September 6, 2022, and you’re interested in donating, please feel free! It’s still a good cause, and if the scholarship fund gets large enough, it may be possible to either increase the size of the scholarship, or to give more than one.

I was in the Oklahoma panhandle in late June for fieldwork in the Morrison with Anne Weil and her crew at the Homestead Quarry. It’s always a fun trip, in part because we see a lot of wildlife out there. One of my favorite panhandle critters, and in fact one of my favorite animals, period, is the pronghorn, Antilocapra americana. Pronghorns are North America’s fastest land animals, and probably the fastest land animals in the world after cheetahs. That’s because they evolved to outrun American cheetahs, Miracinonyx, which went extinct about 12,000 years ago. Once you are familiar with pronghorns, you could never mistake one for a deer. Body profile alone is enough to tell, even at great distances: deer are graceful-looking animals with long, tapering legs, whereas pronghorns look like lozenges on stilts.

On June 21, we were heading back to Black Mesa after checking out some new-to-me Morrison outcrops north of Boise City, Oklahoma (see Richmond et al. 2020). I was driving my Kia Sorento, with a couple of students also in the truck. I came over a hill going about 65 mph (105 kph), and a female pronghorn that had been grazing in the ditch decided that would be the perfect time to bolt across the road. I thought I was about to have a fairly disastrous high-speed collision with a large-ish ungulate, but between my braking and her veering off a bit, we narrowly missed colliding. Instead, she ended up running down the road, parallel with my truck, seriously about 1 meter ahead and left of the driver’s side front tire. For a few seconds, I was driving 55 mph (89 kph) and she was keeping pace, and it didn’t look like she was really taxing herself. Then I realized that she was technically out ahead of the bumper and could still decide to run in front of the truck, so I accelerated and got past her, but the key point is that I had to speed up to about 60 mph (97 kph) to do it. Once I was past her, she trotted to a stop and stood in the middle of the road, watching me drive off (the road ahead was empty, and I was watching her in the rearview mirror).

I’ve read other anecdotal accounts of people driving alongside pronghorns that were really booking it — some memorable ones are recounted in the Guinness Book of Animal Facts and Feats (Wood 1982) — but I never imagined that I’d get to experience something like that. It was cool as heck, and one of the best wildlife encounters of my life. It all happened too quickly to get any photos, so I’m illustrating this post with pronghorn photos I got on a stargazing expedition to Black Mesa in September, 2020. I also have some half-decent pronghorn photos in this post from 2016.

References

  • Richmond, D.R., Hunt, T.C. and Cifelli, R.L. 2020. Stratigraphy and sedimentology of the Morrison Formation in the western panhandle of Oklahoma with reference to the historical Stovall dinosaur quarries. The Journal of Geology 128(6): 477-515.
  • Wood, G. L. 1982. The Guinness Book of Animals Facts & Feats (3rd edition). Guinness Superlatives Ltd., Enfield, Middlesex, 252 pp.

Long-time readers may recall that back in 2009, I was quote-mined in the television documentary series Clash of the Dinosaurs (1, 2, 3). Turns out, such misrepresentations are not that uncommon, and now there’s a whole feature-length documentary about the problem, titled Science Friction. The trailer is above, and the film’s homepage is here. It’s streaming on Amazon Prime Video and on Tubi (maaaybe for free? I don’t have a Tubi subscription but the film plays in browser for me with no payment…). Science Friction has earned a decent number of film festival accolades, and I’m proud to have been involved.

Note to my future navel-gazing self: I’m on at 0:19:40 to 0:21:21, and again from 1:22:21 to 1:22:50.

I’m currently working on a paper about the AMNH’s rearing Barosaurus mount. (That’s just one of the multiple reasons I am currently obsessed by Barosaurus.) It’s a fascinating process: more of a history project than a scientific one. It’s throwing up all sorts of things. Here’s one.

In 1992, the year after the mount went up, S. O. Landry gave a talk at the annual meeting of American Zoologist about this mount. I don’t even remember now where I saw a reference to this, or how I found it, but the untitled abstract is on JSTOR, as part of the society’s abstracts volume. Here it is, in its entirety:

I thought he’d made some good points, so I wanted to figure out whether he’d ever gone on from this 31-year-old abstract and published a paper about it.

Based on the surname, initials and affiliation, I searched here and there, and turned up a few bits and pieces. I learned that he was  a Professor of Biology at SUNY at Binghamton, specialising in hystricomorph rodents. I found out that his wife Helen died in 2007 after 57 years’ marriage. (That’s not just idle curiosity: it’s how I discovered that his first name was Stuart.) I found a photograph of him, taken in 1975, with Assemblyman James L. Tallon, and learned in the process that his middle name was Omer. I found that he was at one time the Graduate Dean at SUNY Binghamton, and opposed the 1972 rise in tuition fees from $800 per year to $1200–$1500. I learned that his BS was from Harvard College and his Ph.D from UC Berkeley, and that he is still listed as a professor emeritus at SUNY Binghamton. I discovered that he “pooh-poohs the idea that young students’ minds are “tabula rasas” – blank slates”. I know that in 1966 he translated C. C. Robin’s Voyage to the Interior of Louisiana from its original French. I learned that he was born in 1924 and died in 2015 at the age of 90, and served in the Battle of the Bulge.  More troublingly, I discovered that his father, also named Stuart Omer Landry, was known for writing racist tracts for the Pelican Publishing Company, but that he himself rose above that heritage and became known for his progressive politics.

I don’t know what to make of any of this. It seems that he never published anything substantive about Barosaurus, so in that sense, I have lost interest in him. But isn’t it strange that in trying to answer the simple question “Did the S. O. Landry who wrote an abstract about rearing Barosaurus write anything else on the subject?” has wound up opening the book of someone’s life like this?

And how strange that someone with 90 years of rich, complex life and numerous academic achievements should be, to me, just the guy who wrote an untitled abstract about Barosaurus that one time.

A new book is out from Cambridge University Press, Dental Cementum in Anthropology, edited by Stephan Naji, William Rendu, and Lionel Gourichon. Although human teeth are not my area of expertise, I ended up coauthoring the twelfth chapter of the book, “Tooth cementum annulations method for determining age at death using modern deciduous human teeth: challenges and lessons learned”. Of all of my publications, this one is the hardest to write about. In part that’s because our original project failed, for various reasons that we document in the chapter, and the final publication is mostly a catalog of things not to do. But more importantly, it’s because Vicki Wedel, the lead author and my spouse of nearly 25 years, passed away unexpectedly last May.

I haven’t written here about Vicki’s passing because I’ve never been sure what to say. Other than two memorial ceremonies last year and a handful of Facebook posts in the month or so after, I haven’t talked about it in public at all. I hoped that I’d know what to say by the time that the book chapter was published, but here we are, and words still feel like grotesquely inadequate tools with which to sketch the horrifying suddenness and totality of the loss. I thought that time would dull the edge of grief, but it doesn’t hurt any less 10 months after, it just hurts less often. I haven’t become numb to any of the obvious triggers, I’ve just gotten good at side-stepping them. All that means is that it’s a cruel surprise when, at unpredictable and frequent intervals, grief sidles up and slips a dagger between my ribs.

Vicki and I met in high school, when we were both 16. We dated for five years, and got married when we were 21. Professionally, she was always ahead of me: she earned her bachelor’s degree first, and her master’s, and her doctorate; presented at a conference before I did, and traveled internationally, and published a journal article, and a book; got a tenure-track job first, and mentored a graduate student first. Far from being resentful, I was emboldened by her successes in every one of those arenas, and grateful for her example and her encouragement. She passed on May 15, 2021, three weeks short of our 25th wedding anniversary, and five months before our 30th anniversary as a couple. 

As a forensic anthropologist, Vicki was frequently asked how she wanted to die. Her standard answer was that she wanted to go quietly in her sleep, at home, in clean clothes; to be found almost immediately by family; and to be conveyed rapidly to a funeral home. The timing was nothing that any of us had imagined or hoped for, but in the actual event she got everything she had wanted, and that is no small comfort. She went out at the apex of her personal and professional development, with no decline and no suffering, which is something that most of us will not get.

Vicki and I daydreamed of coauthoring papers together, and we always figured we’d get around to it eventually, although we both expected that any joint publications would be on dinosaur bone histology (she was the hard-tissue histologist, I would have supplied the dinosaurs). In the actual event, she was working on a project to determine age at death of human adolescents by counting cementum bands in deciduous teeth (‘baby teeth’), and she hit a wall transmuting the results into a discussion. I volunteered to help with that, and pretty soon I’d gotten sucked into being genuinely interested in the problem that she was up against.

The development and loss of deciduous teeth restrict cementochronology to the interval in which the root apex is complete. (Wedel et al. 2022: fig. 12.1)

I’ve written here before about the method of counting dental cementum bands, which are laid down annually, to determine age and season at death (this post). Vicki wanted to know if that method, which she’d used successfully on permanent teeth, would work on deciduous teeth. That turns out to be a surprisingly tricky problem, for several reasons. One of the foremost reasons is sampling. Human deciduous teeth have three fates:

  1. Most deciduous teeth complete development normally, which means that the roots are resorbed and the teeth fall out. The resorption of the root destroys the cementum bands, so there’s nothing to study. 
  2. Some deciduous teeth are retained in the jaw instead of being resorbed, and usually these retained teeth are pulled by dentists when it becomes clear that they are not going to fall out on their own. Practically by definition, these retained teeth do not represent the typical course of development — not great when you’re trying to validate a method on ‘normal’ samples.
  3. Tragically, some deciduous teeth stop developing because they belong to people who die as children or adolescents. For reasons of privacy and respect for grieving loved ones these teeth are rarely used in research, and they don’t represent a controlled sample anyway. The remains of children from archaeological sites have the additional problem that there’s often no good independent line of evidence for age at death, which makes them useless for a validation study.

As we put it in the chapter, “normal, healthy deciduous teeth are unlikely to be extracted, and extracted deciduous teeth are therefore unlikely to be normal”.

We did have some deciduous teeth, culled from a sample of more than 1000 teeth collected by dentists at Creighton University in Omaha, Nebraska, and sent to Vicki by her collaborator, Ken Hermsen, who coauthored the chapter with us. Unfortunately, the methods that had worked so well for Vicki on adult teeth broke down when applied to deciduous teeth, in multiple ways that left us scratching our heads and chasing phantoms. I won’t go through the whole litany of failures here — it’s too depressing, and I already coauthored a whole chapter about it. Suffice it to say that peer review worked in this case, when an anonymous reviewer caught and called attention to our errors. We were ready to shelve the chapter, but lead editor Stephan Naji encouraged us to not let all our effort go to waste. About all we could do in the remaining time was catalog the stuff we’d done wrong, so…that’s the paper. It’s very much an ‘eating our vegetables’ affair, but hopefully it will steer future researchers away from the reefs that our original study foundered on. I’m grateful to Stephan for the opportunity to publish — not least because it would be my last chance to collaborate with my partner — and for the lovely words about Vicki that he wrote in the dedication of the book.

It is supremely bittersweet that Vicki and I finally got to coauthor something, only for it to come out when she’s no longer around to see it. It also hit me with unexpected force that with the publication of this book, Vicki’s scientific legacy is almost complete (there is one more collaboration, with folks other than me, that will hopefully still get published). Like many things related to her passing, those thoughts don’t point anywhere. There’s no neat resolution, no bow to tie things up with. Sometimes things just stop, awkwardly and before their time, and there’s nothing to do but go on.

Reference

Wedel†, V., Hermsen, K., & Wedel, M. 2022. Tooth cementum annulations method for determining age at death using modern deciduous human teeth: challenges and lessons learned. pp. 215-225 in Naji, S., Rendu, W., and Gourichon, L. (eds.), Dental Cementum in Anthropology. Cambridge University Press, Cambridge, UK. doi:10.1017/9781108569507.014