Vertebrae of Haplocanthosaurus (A-C) and a giraffe (D-F) illustrating three ways of orienting a vertebra: articular surfaces vertical — or at least the caudal articular surface vertical (A and D), floor of the neural canal horizontal (B and E), and similarity in articulation (C and F). See the paper for details! Taylor and Wedel (2002: fig. 6).

This is a lovely cosmic alignment: right after the 15th anniversary of this blog, Mike and I have our 11th coauthored publication (not counting abstracts and preprints) out today.

Taylor, Michael P., and Wedel, Mathew J. 2022. What do we mean by the directions “cranial” and “caudal” on a vertebra? Journal of Paleontological Techniques 25:1-24.

This one started back in 2018, with Mike’s post, What does it mean for a vertebra to be “horizontal”? That post and subsequent posts on the same topic (one, two, three) provoked interesting discussions in the comment threads, and convinced us that there was something here worth grappling with. We gave a presentation on the topic at the 1st Palaeontological Virtual Congress that December, which we made available as a preprint, which led to us writing the paper in the open, which led to another preprint (of the paper this time, not the talk).

Orienting vertebrae with the long axis of the centrum held horizontally seems simple enough, but choosing landmarks can be surprisingly complex. Taylor and Wedel (2022 fig. 5).

This project represented some interesting watersheds for us. It was not our first time turning a series of blog posts into a paper — see our 2013 paper on neural spine bifurcation for that — but it was our first time writing a joint paper in the open (Mike had started writing the Archbishop description in the open a few months earlier). It was also the last, or at least the most recent, manuscript that we released as a preprint, although we’ve released some conference presentations as preprints since then. I’m much less interested in preprints than I used to be, for reasons explained in this post, and I think Mike sees them as rather pointless if you’re writing the paper in the open anyway, which is his standard approach these days (Mike, feel free to correct me here or in the comments if I’m mischaracterizing your position).

So, we got it submitted, we got reviews, and then…we sat on them for a while. We have both struggled in the last few years with Getting Things Done, or at least Getting Things Finished (Mike’s account, my own), and this paper suffered from that. Part of the problem is that Mike and have far too many projects going at any one time. At last count, we have about 20 joint projects in various stages of gestation, and about 11 more that we’ve admitted we’re never going to get to (our To Don’t list), and that doesn’t count our collaborations with others (like the dozen or so papers I have planned with Jessie Atterholt). We simply can’t keep so many plates spinning, and we’re both working hard at pruning our project list and saying ‘no’ to new things — or, if we do think of new projects, we try to hand them off to others as quickly and cleanly as possible.

Two different ways of looking at a Haplocanthosaurus tail vertebra. Read on for a couple of recent real-life examples. Taylor and Wedel (2022: fig. 2).

Anyway, Mike got rolling on the revisions a few months ago, and it was accepted for publication sometime in late spring or early summer, I think. Normally it would have been published in days, but the Journal of Paleontological Techniques was moving between websites and servers, and that took a while. But Mike and I were in no tearing rush, and the paper is out today, so all is well.

One of the bits of the paper that I’m most proud of is the description of cheap and easy methods for determining the orientation of the neural canal. For neural canals that are open, either because they were fully prepped or never full of matrix to begin with, there’s the rolled-up-piece-of-paper method, which I believe first appeared on the blog back when I was posting photos of the tail vertebrae of the Brachiosaurus altithorax holotype. For neural canals that aren’t open, Mike came up with the Blu-tack-and-toothpick method, as shown in Figure 12 in the new paper:

A 3d print of NHMUK PV R2095, the holotype of Xenoposeidon, illustrating the toothpick method of determining neural canal orientation. Taylor and Wedel (2022: fig. 12).

I know both methods work because I recently had occasion to use them, studying the Haplocanthosaurus holotypes (see this post). For CM 572, the neural canal of the first caudal vertebra is full of matrix, so I used a variant of the toothpick method. I didn’t actually have Blu-tack or toothpicks, so I cut thin pieces of plastic from the edge of an SVP scale bar and stuck them in bits of kneadable eraser. It worked just fine:

The neural canal of caudal 2 was prepped, so I could use the rolled-up-piece-of-paper method:

(Incidentally, Mike and I refer to our low-tech orientation-visualizers as “neural-canal-inators”, in honor of Dr. Heinz Doofenshmirtz from Phineas and Ferb.)

In the above photos, notice how terribly thin the base of the neural arch is, antero-posteriorly. Both of these vertebrae are in pretty good shape, without much breakage or missing material, and their morphology is broadly consistent with that of other proximal caudals of Haplocanthosaurus, so we can’t write this off as distortion. As weird as it looks, this is just what Haplo proximal caudals were like. And with the neural canals held horizontally, the first two caudals end up oriented like so:

Now, as we pointed out in the paper, the titular question is not about determining the posture of the vertebrae in life, it’s about defining the directions ‘cranial’ and ‘caudal’ for isolated vertebrae — Mike asked the question back when for the holotype (single) dorsal vertebra of Xenoposeidon. But an interesting spin-off for me has been getting confronted with the weirdness of vertebrae whose articular surfaces are nowhere near orthogonal with their neural canals. I tilted those CM 572 Haplo caudals so that their neural canals were horizontal partly because that’s the preferred orientation that Mike and I landed on in the course of this work, but also partly because to me, that’s a more arresting image than the preceding ones with the articular faces held vertically. I’m both freaked out and fascinated, and that seems like a promising combination — there are mysteries here that cry out to be solved.

As usual, we have loads of people to thank. In addition to all those listed in the Acknowledgments of the new paper, I’m grateful to Matt Lamanna and Amy Henrici of the Carnegie Museum of Natural History for letting me play with study the Haplo specimens in their care. Mike and I also owe a huge thanks to the editorial team at the Journal of Paleontological Techniques. We reached out to them a few days ago to ask if it might be possible to get our in-press paper done and out in time for SV-POW!’s anniversary weekend, and they pitched in to make it happen.

What’s next? We weighed the evidence and formulated what the best solution we could think of. Now it’s up to the world to decide if that was a useful contribution. The comment thread is open — let’s find out.

On Thursday, I took the family to the Cotswolds Wildlife Park, a rather lovely zoo just over an hour away from us in Burford, Oxfordshire. Somehow I’d never even heard of this place until we passed a sign for it on the A417 a few weeks ago. Lots of great stuff there, but I wanted to focus on this:

As you can see, the clump of big trees in the giraffe enclosure has had all its foliage methodically stripped off, right up to the point where the tallest giraffe can reach, giving it a striking mushroom shape.

Figure 3. BIBE 45854, articulated series of nine mid and posterior cervical vertebrae of a large, osteologically mature Alamosaurus sanjuanensis. Series is estimated to represent the sixth to fourteenth cervical vertebrae. A, composite photo-mosaic of the cervical series in right lateral view; identification of each vertebra indicated by C6 to C14, respectively. B, line drawing based on the photo-mosaic in A. C, line drawing in B with labels shown and vertebral fossae indicated by solid grey fill; cross-hatching represents broken bone surfaces and reconstructive material. Abbreviations: C, cervical vertebra; cdf, centrodiapophyseal fossa; clf, centrum lateral fossa; pocdf, postzygapophyseal centrodiapophyseal fossa; prcdf, prezygapophyseal centrodiapophyseal fossa; prcdf1, dorsal prezygapophyseal centrodiapophyseal fossa; prcdf2, ventral prezygapophyseal centrodiapophyseal fossa; sdf, spinodiapophyseal fossa; spof, spinopostzygapophyseal fossa; sprf, spinoprezygapophyseal fossa. (Tykoski and Fiorillo 2016)

Have you been reading Justin Tweet’s series, “Your Friends the Titanosaurs“, at his awesomely-named blog, Equatorial Minnesota? If not, get on it. He’s been running the series since June, 2018, so this notice is only somewhat grotesquely overdue. The latest installment, on Alamosaurus from Texas and Mexico, is phenomenal. I have never seen another summary or review that pulled together so much of the relevant literature and explained it all so well. Seriously, that blog post deserves to be a review paper; it could be submitted pretty much as-is, although it would be even better with his two other Alamosaurus posts integrated (this one, and this one). It’s great work, is what I’m saying, and it needs to be acknowledged.

In particular, I was struck by the note by Anonymous in 1941 on the discovery of a cervical vertebra 1.2 meters long. I’d never heard of that ref, and I’ve never seen that vert, but at 120cm it would be in the top 7 longest cervical vertebrae on the planet (see the latest version of the list in this post), narrowly beating out the 118-cm cervical of Puertasaurus. In fairness, the preserved cervical of Puertasaurus is probably a posterior one, and more anterior cervicals might have been longer. Then again, in the big Alamosaurus neck the longest verts are pretty darned posterior, so…we need more Puertasaurus.

EDIT a few hours later: Thanks to the kind offices of Justin Tweet, I’ve now seen Anonymous (1941), and the exact wording is, “A single vertebra, or neck joint bone, is three feet across, only two inches less than four feet long, and in its present fossilized state weighs 600 pounds.” ‘Two inches less than four feet long’ is 46 inches or a hair under 117cm, which puts the supposed giant cervical just behind Puertasaurus after all, but still firmly in the top 10. And depending on how one interprets the passage in Anonymous (1941), it might not have been any bigger than BIBE 45854–see this comment for details.

Big cervical showdown. From the top left: BYU 9024, originally referred to Supersaurus but more likely representing a giant Barosaurus (137cm); the single available cervical of Puertasaurus (118cm); a world-record giraffe neck (2.4m); Alamosaurus referred cervical series BIBE 45854, longest centra are ~81cm; Sauroposeidon holotype OMNH 53062, longest centrum is 125cm. This image makes it very clear that whatever Sauroposeidon was doing, it was a way different thing from Alamosaurus.

Crucially, the longest vertebrae in the BIBE 45854 series are about 80 or 81 cm long, which means that a 1.2-meter cervical would be half again as large. That is a pretty staggering thought, and that individual of Alamosaurus–assuming it was the same taxon as BIBE 45854, and not some other, longer-necked critter–would definitely be a contender for the largest sauropod of all time.

Illustrations here are of the big Alamosaurus cervical series from Big Bend, which was comprehensively described by Ron Tykoski and Tony Fiorillo in 2016, and which we have covered in these previous posts:

References

  • Anonymous. 1941. Find dinosaur neck bone nearly four feet long. The Science News-Letter 39(1):6–7.
  • Tykoski, R.S. and Fiorillo, A.R. 2016. An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America’s last giant sauropod. Journal of Systematic Palaeontology 15(5):339-364.

Here’s one of my most prized possessions: a cannon bone from a giraffe. I got it last fall from Necromance, a cool natural history store in LA. Originally they had a matched pair on display in the front window. Jessie Atterholt got one of them last summer, and I got the other a few months later.

The cannon bones of hoofed mammals consist of fused metacarpals (in the forelimbs) or metatarsals (in the hindlimbs). In this case, the giraffe cannon bone in the top photo is the one from the right forelimb, consisting of the fused 3rd and 4th metacarpals, which correspond to the bones in the human hand leading to the middle and ring fingers. Only my third metacarpal is traced in the top photo. For maximum homology goodness I should have traced MC4, too, but I’m lazy.

I didn’t know that this was a right forelimb cannon bone when I got it. In fact, I only figured that out this afternoon, thanks to the figures and text descriptions in Rios et al. (2016), which I got free through Palaeontologia Electronica (you can too). The weirdly large and perfectly circular holes at the ends of my cannon bone were clearly drilled out by somone, I guess maybe for mounting purposes? At first I thought it might have been to help the marrow cook out of the shaft of the bone during simmering and degreasing, but none of the drilled holes intersect the main marrow cavity, they’re just in the sponge of trabecular bone at the ends of the element.

This post is a sequel to one from last year, “Brachiosaurus and human metacarpals compared“, which featured metacarpal 3 from BYU 4744, the partial skeleton of Brachiosaurus from Potter Creek, Colorado. I know what everyone’s thinking: can we make these two high-browsing giants throw hands?

Yes, yes we can. The giraffe cannon bone is 75.5cm long, and the brachiosaur metacarpal is 57cm long, or 75.5% the length of the giraffe element. I scaled the two bones correctly in the above image. My hands aren’t the same size because they’re at different distances from the camera, illustrating the age-old dictum that scale bars are not to be trusted.

The Potter Creek brachiosaur is one of the largest in the world–here’s me with a cast of its humerus–but ‘my’ giraffe is not. World-record giraffes are about 19 feet tall (5.8m), and doing some quick-and-dirty cross-scaling using the skeleton photo above suggests that the metacarpal cannon bone in a world-record giraffe should be pushing 90cm. So the giraffe my cannon bone is from was probably between 15.5 and 16 feet tall (4.7-4.9m), which is still nothing to sniff at.

I don’t know how this bone came to be at Necromance. I assume from an estate sale or something. I only visited for the first time last year, and at that time they had three real bones from giraffes out in the showroom: the two cannon bones and a cervical vertebra. They might have put out more stuff since–it’s been about six months since I’ve been there–but all of the giraffe bones they had at that point have been snapped up by WesternU anatomists. Jessie and I got the cannon bones, and Thierra Nalley got the cervical vertebra, which is fair since she works on the evolution of necks (mostly in primates–see her Google Scholar page here). I don’t know if there are any photos of Thierra’s cervical online, but Jessie did an Instagram post on her cannon bone, which is nearly as long as her whole damn leg.

There will be more anatomy coming along soon, and probably some noodling about sauropods. Stay tuned!

Reference

Ríos M, Danowitz M, Solounias N. 2016. First comprehensive morphological analysis on the metapodials of Giraffidae. Palaeontologia Electronica 19(3):1–39.

 

 

Click to embiggen. Trust me.

Last year about this time I wrote:

Here’s a stupid thing: roughly 2-3 times a year I go to the field or to a museum and get hundreds of SV-POW!-able photos. Then I get back to the world and catch up on all of the work that piled up while I was away. And by the time I’m done with that, whatever motivating spark I had – to get some of those photos posted and talk about the exciting things I figured out – has dissipated.

The museum I was thinking about more than any other when I wrote that is the Museum of Osteology in Oklahoma City. I don’t get there every year, but I stop in as often as possible, and I make it more years than not. And yet, looking back through the archives I see that almost all of my posts about the Museum of Osteology came in a brief flurry five years ago. Shameful!

This summer I was out in the Oklahoma panhandle for fieldwork with Anne Weil, then I had a very quick day in the collections at the OMNH in Norman, then I had to drop my son London with relatives (he stayed for an extra week) and hop a plane home. In between the kid hand-off and the drop-dead get-to-the-airport time I had exactly one spare hour, so of course I hit the museum.

IMG_0571

UPDATE: for the curious, here’s the signage for the hanging humpback whale skeleton.

The Museum of Osteology is easily one of my favorite natural history museums in the world. Like all my favorite museums, it just packed to the gills with actual natural history objects. The signage is tasteful, informative, and discreet, and there is a blessed absence of blaring videos, rotating 3D whatsits, and interactive geegaws to ruin the experience.* You can walk all the way around the big mounted skeletons with no glass in the way. The staff are friendly and helpful, and as you can see from the photos, they even provide comfortable benches for people who wish to sit and ponder the endless forms most beautiful.

That, folks, is a damn fine museum.

* To be clear, I don’t think all videos and interactive displays are evil. But they need to enhance the experience of natural history, not be a substitute for it, and that’s a distinction that seems lost on many exhibit designers.

I was taken by this conjunction of two water-adapted artiodactyls.

Here’s the hippo by itself if you want the whole skeleton.

And a rhino to round out the big African megafauna. I showed the giraffe in this old post.

Even familiar animals that you may think you know front-to-back are often presented in new and interesting ways. I adore this horse skull, which has the maxilla and mandible dissected to show the very tall, ever-growing teeth, which erupt continuously through the horse’s life until the crowns are entirely worn away.

The textures on this giraffe skull are pretty mind-blowing.

I strongly recommend zooming in and tracing out some blood vessel pathways, especially over the orbit, at the bases of the ossicones, and in the temporal fossa (below the ossicones and behind the orbit).

Bottom line, if you are interested in the natural world at all, you owe it to yourself to visit this museum. And you’ll want to go as heavy in the wallet as you can manage, because the gift shop is ridiculous and can easily eat 30-45 minutes and all your disposable income. Take it from a survivor.

Frog RLN ventral view - Ecker 1889 plate 1 fig 115 - RLN highlighted

Just posting a few images from my impending talk at SVPCA this Thursday.

I’ve written about the recurrent laryngeal nerve before, in Wedel (2012) and in this post. It’s present in all tetrapods, from frogs and salamanders on up. The frog RLN is shown in ventral view above, and in lateral view below, both from Ecker (1889:plate 1, figures 114 and 115). I’ve highlighted the RLN in red in both. Perhaps not a monument of inefficiency, but still recurrent, and therefore dumb.

Frog RLN lateral view - Ecker 1889 plate 1 fig 114 - RLN highlighted

And in a giraffe – RLN in blue, nerve path to hindfoot phalanges in red. Hollow circles are nerve cell bodies, solid lines are axons.

Giraffe skeleton silhouette 1000 with nerves

And in the elasmosaur Hydrotherosaurus, same color scheme plus the nerve path to the tail in purple, base image from Welles (1943).

Hydrotherosaurus nerve pathways 4 - RLN pathway

That’s all for now!

References

I imagine that by now, everyone who reads this blog is familiar with Mark Witton’s painting of a giant azhdarchid pterosaur alongside a big giraffe. Here it is, for those who haven’t seen it:

Arambourgiania vs giraffe vs the Disacknowledgement redux Witton ver 2 low res

(This is the fifth and most recent version that Mark has created, taken from 9 things you may not know about giant azhdarchid pterosaurs.)

It’s one of those images that really kicks you in the brain the first time you see it. The idea that an animal the size of a giraffe could fly under its own power seems ludicrous — yet that’s what the evidence tells us.

But wait — what do we mean by “an animal the size of a giraffe”? Yes, the pterosaur in this image is the same height as the giraffe, but how does its weight compare?

Mark says “The giraffe is a big bull Masai individual, standing a healthy 5.6 m tall, close to the maximum known Masai giraffe height.” He doesn’t give a mass, but Wikipedia, citing Owen-Smith (1988), says “Fully grown giraffes stand 5–6 m (16–20 ft) tall, with males taller than females. The average weight is 1,192 kg (2,628 lb) for an adult male and 828 kg (1,825 lb) for an adult female with maximum weights of 1,930 kg (4,250 lb) and 1,180 kg (2,600 lb) having been recorded for males and females, respectively.” So it seems reasonable to use a mass intermediate between those of an average and maximum-sized male, (1192+1930)/2 = 1561 kg.

So much for the giraffe. What does the azhdarchid weigh? The literature is studded with figures that vary wildly, from the 544 kg that Henderson (2010) found for Quetzalcoatlus, right down to the widely cited 70 kg that Chatterjee and Templin (2004) found for the same individual — and even the astonishing 50 kg that seems to be favoured by Unwin (2005:192). In the middle is the 259 kg of Witton (2008).

It occurred to me that I could visualise these mass estimates by shrinking the giraffe in Mark’s image down to the various proposed masses, and seeing how credible it looks to imagine these reduced-sized giraffes weighting the same as the azhdarchid. The maths is simple. For each proposed azhdarchid mass, we figure out what it is as a proportion of the giraffe’s 1561 kg; then the cube root of that mass proportion gives us the linear proportion.

  • 544 kg = 0.389 giraffe masses = 0.704 giraffe lengths
  • 259 kg = 0.166 giraffe masses = 0.549 giraffe lengths
  • 70 kg =0.0448 giraffe masses = 0.355 giraffe lengths

Let’s see how that looks.

Arambourgiania vs giraffe vs the Disacknowledgement redux Witton ver 2 low res

On the left, we have Mark’s artwork, with the giraffe massing 1561 kg. On the right, we have three smaller (isometrically scaled) giraffes of masses corresponding to giant azhdarchid mass estimates in the literature. If Don Henderson (2010) is right, then the pterosaur weighs the same as the 544 kg giraffe, which to me looks pretty feasible if it’s very pneumatic. If Witton (2008) is right, then it weighs the same as the 259 kg giraffe, which I find hard to swallow. And if Chatterjee and Templin (2004) are right, then the giant pterosaur weighs the same as the teeny tiny 70 kg giraffe, which I find frankly ludicrous. (For that matter, 70 kg is in the same size-class as Georgia, the human scale-bar: the idea that she and the pterosaur weigh the same is just silly.)

What is the value of such eyeball comparisons? I’m not sure, beyond a basic reality check. Running this exercise has certainly made me sceptical about even the 250 kg mass range which now seems to be fairly widely accepted among pterosaur workers. Remember, if that mass is correct then the pterosaur and the 259 kg giraffe in the picture above weight the same. Can you buy that?

Or can we find extant analogues? Are there birds and mammals with the same mass that are in the same size relation as these images show?

References

  • Chatterjee, Sankar, and R. J. Templin. 2004. Posture, locomotion, and paleoecology of pterosaurs. Geological Society of America, Special Paper 376. 68 pages.
  • Henderson, Donald M. 2010. Pterosaur body mass estimates from three-dimensional mathematical slicing. Journal of Vertebrate Paleontology 30(3):768-785.
  • Witton, Mark P. 2008. A new approach to determining pterosaur body mass and its implications for pterosaur flight. Zitteliana 28:143-159.

Crocodiles vs. elephants

November 18, 2014

I’ve been reading The Guinness Book of Animal Facts and Feats (Wood 1982) again. Here’s what he says on pages 98-99 about the strength of crocodiles, and what happens when they bite off more than they can chew.

The strength of the crocodile is quite appalling. Deraniyalga (1939) mentions a crocodile in N. Australia which seized and dragged into the river a magnificent 1 tonne Suffolk stallion which had recently been imported from England, despite the fact that this breed of horse can exert a pull of more than 2 tonnes, and there is at least one record of a full-grown black rhinoceros losing a tug-of-war with a big crocodile. Sometimes, however, even crocodiles over-estimate their strength. One day in the 1860s a hunter named Lesley was a witness when a saurian seized the hind-leg of a large bull African elephant while it was bathing in a river in Natal. The crocodile was promptly dragged up the bank by the enraged tusker and then squashed flat by one of its companions who had hurried to the rescue. The victorious elephant then picked up the bloody carcase with its trunk and lodged it in the fork of a nearby tree (Stokes, 1953). Oswell (1894) says he twice found the skeletons of crocodiles 15 ft 4.6 m up in trees by the river’s bank where they had been thrown by angry elephants. On another occasion a surprised crocodile suddenly found itself dangling 15 ft 4.6 m in mid-air when it foolishly seized a drinking giraffe by the head.

The idea of elephants lodging crocodile corpses up in trees seems too bizarre to be true, but seeing it independently attested by two witnesses makes me more ready to accept it. There’s plenty of Internet chatter about this happening, but I’ve not been able to find photos — or better yet, video — proving that it happens.

References

  • Deraniyalga, P. 1939. The tetrapod reptiles of Ceylon, vol. 1: Testudinates and crocodilians. Colombo Nat. Mus., Ceylon.
  • Oswell, W. Cotton. 1894. South Africa fifty years ago. Badminton Library of Sports and Pastimes (Big Game Shooting), London.
  • Stokes, C. W. 1953. Sanctuary. Cape Town.
  • Wood, Gerald L. 1982. The Guinness Book of Animals Facts & Feats (3rd edition). Guinness Superlatives Ltd., Enfield, Middlesex. 252 pp.

Just a quick post to link to all six (so far) installments of the “necks lie” series. I need this because I want to cite all the “necks lie” posts in a paper that I’ll shortly submit, and it seems better to cite a single page than four of them.

I’ll update this post as and when we write more about lying necks.

Also:

What a world we live in.

X-ray of the neck of a seal, from Irish Seal Sanctuary. Note that the vertebral column becomes much more vertical than the fleshy envelope suggests.

X-ray of the neck of a seal, from Irish Seal Sanctuary. Note that the vertebral column becomes much more vertical than the fleshy envelope suggests.

Folks,

You may know that the inaugral TetZooCon is set to take place next Saturday (12 July) at the London Wetland Centre. It’s an informal convention that’s condensed around occasional SV-POW!sketeer Darren Naish’s absurdly informative blog Tetrapod Zoology, and features a day of talks, a palaeoart workshop and a quiz. At £40 for the day, it’s a bit of a bargain.

Among the speakers is my own good self, and I will be talking about why giraffes are rubbish.

Taylor and Wedel 2013a: Figure 3. Necks of long-necked sauropods, to scale. Diplodocus, modified from elements in Hatcher (1901, plate 3), represents a “typical” long-necked sauropod, familiar from many mounted skeletons in museums. Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus modified from Scott Hartman’s reconstructions of Futalognkosaurus, Cedarosaurus, Mamenchisaurus and Supersaurus respectively. Alternating pink and blue bars are one meter in width. Inset shows Fig. 1 to the same scale.

Taylor and Wedel 2013a: Figure 3. Necks of long-necked sauropods, to scale. Diplodocus, modified from elements in Hatcher (1901, plate 3), represents a “typical” long-necked sauropod, familiar from many mounted skeletons in museums. Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus modified from Scott Hartman’s reconstructions of Futalognkosaurus, Cedarosaurus, Mamenchisaurus and Supersaurus respectively. Alternating pink and blue bars are one meter in width. Inset shows Fig. 1 to the same scale.

If that sounds like your idea of a good time, then you need to move fast! Booking closes at 4pm this evening. Better get on it now!