Marten skull on top, opossum on bottom. Internal (medial) view of the right half of each skull.

These have been in my collection for ages, I just hadn’t gotten around to posting pictures. I don’t remember where I got them, but they were definitely purchased rather than collected. It’s funny, I remember the origin story of almost every bone and skull I’ve collected myself, but stuff I’ve bought tends to slide out of recollection.

I assume the marten is the American marten, Martes americana, but I haven’t keyed it out. The opossum is definitely Didelphis virginiana.

I think the opossum skull was already hemisected when it came to me – at least, I can’t find the other half. The marten I did myself, with a Dremel. In part because I wanted to compare the size and shape of the braincases. As you can see from the photos, the marten had a big wrinkly brain that left impressions on the inside of the skull, and these are visible externally through the thin walls of the braincase.

Now, I am an opossum fan, but I will be the first to admit that the osteological evidence does not imply a lot of brainpower for North America’s only resident marsupial. Apparently its brain was small and smooth, untroubled by any thoughts more complicated than trash can access. Images of opossum brains online confirm that impression (or maybe lack of impression, since we’re talking about braincases here).

And yet, opossums are still around, thriving in the face of placentals with our wrinkly brains, high metabolisms, regular garbage collection, and whatnot. Long may they scurry.


The opening remarks by the hosts of conferences are usually highly forgettable, a courtesy platform offered to a high-ranking academic who has nothing to say about the conference’s subject. NOT THIS TIME!

This is the opening address of APE 2018, the Academic Publishing in Europe conference. The remarks are by Martin Grötschel, who as well as being president of the host institution, the Berlin Brandenburg Academy of Sciences and Humanities, is a 25-year veteran of open-access campaigning. and a member of the German DEAL negotiating team.

Here are some choice quotes:

1m50s: “I have always been aware of the significant imbalance and the fundamental divisions of the academic publication market. Being in the DEAL negotiation team, this became even more apparent …”

2m04s: “On the side of the scientists there is an atomistic market where, up to now and unfortunately, many of the actors play without having any clue about the economic consequences of their activities.”

2m22s: “In Germany and a few other countries where buyer alliances have been organised, they are, as expected, immediately accused of forming monopolies and they are taken to court — fortunately, without success, and with the result of strengthening the alliances.”

2m38s: “On the publishers’ side there is a very small number of huge publication enterprises with very smart marketing people. They totally dominate the market, produce grotesque profits, and amazingly manage to pretend to be the Good Samaritans of the sciences.”

2m27s: “And there are the tiny [publishers …] tentatively observed by many delegates of the big players, who are letting them play the game, ready to swallow them if an opportunity comes up.”

3m18s: “When you, the small publishers, discuss with the representatives of the big guys, these are most likely very friendly to you. But […] when it comes to discussing system changes, when the arguments get tight, the smiles disappear and the greed begins to gleam.”

3m42s: “You will hear in words, and not implicitly, that the small academic publishers are considered to be just round-off errors, tolerated for another while, irrelevant for the world-wide scientific publishing market, and having no influence at all.”

4m00s: “One big publisher stated: if your country stops subscribing to our journals, science in your country will be set back significantly. I responded […] it is interesting to hear such a threat from a producer of envelopes who does not have any idea of the contents.”

4m39s: “Will the small publishers side with the intentions of the scholars? Or will you try to copy the move towards becoming a packaging industry that exploits the volunteer work of scientists and results financed by public funding?”

5m55: “I do know, though, that the major publishers are verbally agreeing [to low-cost Gold #OpenAccess] , but not acting in this direction all, simply to maintain their huge profit margins.”

6m06s: “In a market economy, no-one can argue against profit maximisation [of barrier-based scholarly publishers]. But one is also allowed to act against it. The danger may be really disruptive, instead of smooth moves in the development of the academic publishing market.”

6:42: “You may not have enjoyed my somewhat unusual words of welcome, but I do hope that you enjoy this year’s APE conference.”

It’s just beautiful to hear someone in such a senior position, given such a platform, using it say so very clearly what we’re all thinking. (And as a side-note: I’m constantly amazed that so many advocates are so clear, emphatic and rhetorically powerful in their second, or sometimes third, language. Humbling.)

As RLUK’s David Prosser noted: “I bet this wasn’t what the conference organisers were expecting. A fabulous, hard-hitting polemic on big publishers #OA.”



Note. This post is adapted from a thread of tweets that I posted excerpting the video.

Someone on Facebook asked whether sauropods had subcutaneous fat, and by the time my answer hit five paragraphs I thought, “The merciful thing to do here is blog this and link to it.” So here are some things to keep in mind regarding the integumentary systems of sauropods.

Emu dissection at UC Santa Cruz back in 2004. Note the fat pad on the chest and how it abruptly comes to an end.

Sauropods may have had some subcutaneous fat – we can’t rule it out – but it probably wasn’t broadly distributed as it is in mammals. In the interaction of their air sac systems with connective tissue, sauropods were probably a lot like birds. Most birds don’t have subcutaneous fat all over their bodies. Instead, they have subcutaneous air sacs (or pneumatic diverticula) over parts or all of their bodies – in pelicans these are like bubble wrap under the skin, presumably for impact padding and insulation (Richardson 1939, 1943). The diverticula go everywhere and most places they go, they replace adipose tissue, even the harmless bits of fat between muscles that are basically the body’s packing peanuts (broiler chickens don’t count here, they’ve been artificially selected to be radically unhealthy). We suspect that sauropods had subcutaneous diverticula because so many other aspects of their pneumatic systems correspond to those of living birds (see the discussion in Wedel and Taylor 2013b for more on that).

Contrast the narrow line of adipose tissue down the ventral midline with the almost-completely-lean hindlimb.

That’s not to say that birds don’t have subcutaneous fat, just that it tends to be highly localized. Back in grad school I got to help dissect an emu (link) and a rhea (one, two), and in both cases the fat was concentrated in two places: huge paired fat pads over the pelvis, like big lozenges, and a concentration over the sternum with extensions along the ventral midline from the base of the neck to the cloaca. It was weird, the fat would be present and then it would just stop, like somebody flipped a switch. We pulled 18 lbs of fat off a 102-lb emu, so it wasn’t a trivial part of the body composition. IME, even relatively fatty birds like ducks tend to have the fat start and stop abruptly, and again, the fat deposits tend to be concentrated on the breast and tummy and over the hips.

Fat-tailed gecko, borrowed from here.

A lot of lizards and crocs and even some turtles carry fat deposits in their tails, and that is one aspect of sauropod anatomy that is definitely un-bird-like. So some sauropods might have had fat tails.

We can be pretty sure that at least some sauropods had thick skin. Osteoderms (armor plates) from Madagascar show that the bits that were embedded in the skin could be up to 7cm thick, so the surrounding skin was at least that thick and possibly even thicker (Dodson et al. 1998). And that was most likely on Rapetosaurus, which was not a huge sauropod. So giant sauropods might have had even thicker skin. Maybe. Remember that big-ass-ness (here arbitrarily defined as 40+ metric tons) evolved independently in:

They probably didn’t all get there looking the same way, beyond sharing the basic sauropod bauplan.

I’m too lazy to write about the fossil evidence for scaly skin and keratinous spines in sauropods – see this post and the references therein.

One final thing to think about is scar tissue. The scar tissue on the chest of a male elephant seal can be up to 5cm thick. Some sauropods might have had calluses or patches of scar tissue in predictable places, from combat, or habitually pushing down trees with their chests or tails, or doing whatever weird things real animals do when we’re not looking.

So in the toolbox of things to play with in reconstructing the integument of sauropods, we have thick skin, keratinous spines, osteoderms, fat pads (possibly concentrated over the hips and shoulders or on the tail), subcutaneous diverticula, calluses, and scar tissue. And that’s just the stuff we have found or reasonably inferred so far, barely 150 years into our exploration of animals we know mostly from bits and bobs, whose size means they mostly got buried in big sediment-dumping events that would not preserve delicate integumentary structures. Give us a millennium of Yixian Formations and Mahajanga Basins and Howe Quarries and the picture will probably change, and the arrow of history dictates that it will change for the weirder.

Likely? Probably not. But roll the evolutionary dice for 160 million years and you’ll get stranger things than this. Recycled from this post.

Finally, and related to my observation about big-ass-ness: sauropods were a globally-distributed radiation of animals from horse-sized to whale-sized that existed from the Late Triassic to the end of the Cretaceous. The chances that all of them had the same integumentary specializations, for display or combat or insulation or camouflage or whatever, are pretty darned low. Support weird sauropods – and vanilla ones, too.

Almost immediate update: I’ve just been reminded about Mark Witton’s excellent post on dinosaur fat from a couple of years ago. Go read that, and the rest of his blog. I’m sure I missed other relevant posts at other excellent blogs – feel free to remind me in the comments.


One of the field trips for last year’s SVPCA meeting was a jaunt to Nottingham to see the Dinosaurs of China exhibit at Wollaton Hall. We got to see a lot of stuff, including original fossils of some pretty famous feathered dinos – but of course what really captured our attention was the mounted Mamenchisaurus. This is a cast of the good old M. hochuanensis holotype specimen that has been put up all over the world, including in a car-park in Copenhagenon stilts in Chicago and even in a flooded basement in Slovenia.

Wollaton Hall houses the Nottingham Museum of Natural History, which is a fantastic trove of weird and wonderful things from around the world. We should really post about those things – I had them in mind when I was recently lamenting my lousy conversion rate of museum visit photos into blog posts. That will have to wait for another time. I’ll just note in closing that grand buildings and mounted sauropods go together like peanut butter and chocolate, and that this field trip was outstanding.

Mike Taylor, Matt Wedel, Darren Naish, and Bob Nicholls (kneeling) at Wollaton Hall, with Mamenchisaurus hochuanensis for scale.

Back in 2009, I posted on a big cervical series discovered in Big Bend National Park. Then in 2013 I posted again about how I was going to the Perot Museum in Dallas to see that cervical series, which by then was fully prepped and on display but awaiting a full description. Ron Tykoski and Tony Fiorillo (2016) published that description a couple of years ago, and after almost five years it’s probably time I posted an update.

I did visit the Perot Museum in 2013 and Ron and Tony kindly let me hop the fence and get up close and personal with their baby. I got a lot of nice photos and measurements of the big specimen. It’s an impressive thing. Compared to the other big sauropod cervicals I’ve gotten to play with, these vertebrae aren’t all that long – the two longest centra are about 80cm, compared to ~120cm for Sauroposeidon, Puertasaurus, and Patagotitan, and 137cm for Supersaurus (more details here) – but they are massive. According to the table of measurements (yay!) in Tykoski and Fiorillo (2016), which accord well with the measurements I took when I was there, the last vert is 117.5cm tall from the bottom of the cervical rib to the top of the neural spine, 98.4cm wide across the diapophyses, and has a cotyle measuring 29cm tall by 42cm wide. Here it is with me for scale:

I guarantee you, standing next to that thing and imagining it being inside the neck of a living animal is a breathtaking experience.

I failed in my mission in one way. In a comment on my 2013 post, I said, “I’ll try to get some good lateral views of the mount with as little perspective as possible.” But it can’t be done – the geometry of the room and the size of the skeleton don’t allow it, as Ron noted in the very next comment. There is one place in the exhibit hall where you can get the whole skeleton into the frame, and that’s a sort of right anterolateral oblique view. Here’s my best attempt:

So, this is an awesome specimen and you should go see it. As you can see from the photos, the vertebrae are right on the other side of the signage, with no glass between you and them, so you can see a lot. The rest of the exhibits are top notch as well. Definitely worth a visit if you find yourself within striking distance of Dallas.


Tykoski, R.S. and Fiorillo, A.R. 2016. An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America’s last giant sauropod. Journal of Systematic Palaeontology 15(5):339-364.

This past weekend I was camping up the coast at Hearst San Simeon State Park, with my son, London, and Brian Engh.

We went to see the elephant seal colony at Piedras Blancas. It was my first time seeing elephant seals in the wild. Not having done any research in advance, I was expecting something like this:

In other words, a small number of elephant seals, not doing much, basically at binocular distance from the viewing area. Obviously we did get some of that, since I have a picture of it. But that was up the coast a bit, at the start of Boucher Trail near the Piedras Blancas lighthouse.

We spent most of our time at the main Piedras Blancas rookery, where just the southeastern half of the viewing area looked – and sounded – like this:

We also saw a lot of this (semi-groady iPhone-through-binocular shot by me):

and even some of this (much nicer photo courtesy of Brian Engh):

I’ll have a lot more to say about this real soon, including more video, but it’s late and I need sleep. Stay tuned!

When I was nine, a copy of Don Glut’s The New Dinosaur Dictionary turned up in my local Waldenbooks. It wasn’t my first dinosaur book, by far – I’d been a dinosaurophile since the age of three. But The New Dinosaur Dictionary was different.

Up to that point, I had subsisted on a heavy diet of kids’ dino books and the occasional article in National Geographic and Ranger Rick. The kids’ books were aimed at kids and the magazine articles were pitched at an engagingly popular level. I didn’t understand every word, but they were clearly written for curious layfolk, not specialists.

A typical spread from The New Dinosaur Dictionary (Glut, 1982). The armored sauropod blew my young mind.

The New Dinosaur Dictionary was something else entirely. It had photos of actual dinosaur bones and illustrations of skeletons with cryptic captions like, “Skeleton of Daspletosaurus torosus. (After Russell)”. Okay, clearly this Russell cove was out there drawing dinosaur skeletons and this book had reproduced some of them. But nobody I knew talked like that, and the books I had access to up to that point held no comparable language.

The New Dinosaur Dictionary (Glut, 1982: p. 271)

Then there was stuff like this: “The so-called Von Hughenden sauropod restored as a brachiosaurid by Mark Hallett”. A chain of fascinating and pleasurable ideas detonated in my brain. “The so-called” – say what now? Nobody even knew what to call this thing? Somehow I had inadvertently sailed right to the edge of human knowledge of dinosaurs, and was peering out into taxa incognita. “Restored as a brachiosaurid” – so this was just one of several possible ways that the animal might have looked. Even the scientists weren’t sure. This was a far cry from the bland assurances and blithely patronizing tones of all my previous dinosaur books.

“By Mark Hallett.” I didn’t know who this Hallett guy was, but his art was all over the book, along with William Stout and some guy named Robert T. Bakker and a host of others who were exploding my conception of what paleo art could even be. Anyway, this Mark Hallett was someone to watch, not only because he got mentioned by name a lot, but because his art had a crisp quality that teetered on some hypercanny ridge between photorealism and scribbling. His sketches looked like they might just walk off the page.

In case that line about scribbling sounds dismissive: I have always preferred sketches by my favorite artists to their finished products. The polished works are frequently inhumanly good. They seem to have descended in a state of completed perfection from some divine realm, unattainable by mere mortals. Whereas sketches give us a look under the hood, and show how a good artist can conjure light, shadow, form, weight, and texture from a few pencil strokes. Put it this way: I am anatomist by temperament first, and by training and occupation second. Of course I want to see how things are put together.

The New Dinosaur Dictionary (Glut, 1982: p. 75)

Anyway, The New Dinosaur Dictionary was something completely new in my experience. It wasn’t aimed at kids and written as if by kids, like lots of kids’ books. It wasn’t even written by adults talking down (deliberately or inadvertently) to kids, or trying to reach a wide audience that might include kids. It was written by an adult, aiming at other adults. And it was admitting in plain language that we didn’t know everything yet, that there were lots of animals trembling on the outer threshold of scientific knowledge. I didn’t understand half of it – I was down in an ontogenetic trench, looking up as these packets of information exploded like fireworks over my head.

In Seeing In the Dark, the best book about why you should go out stargazing for yourself, Timothy Ferris writes about growing up on Florida’s Space Coast in the early 1960s, and watching the first generation of artificial satellites pass overhead:

I felt like an ancient lungfish contemplating the land from the sea. We could get up there.

That’s precisely the effect that The New Dinosaur Dictionary had on me: I could get up there. Maybe not immediately. But there were steps, bodies of knowledge that could be mastered piecemeal, and most of all, mysteries to be resolved. The book itself was like a sketch, showing how from isolated and broken bones and incomplete skeletons, scientists and artists reconstructed the world of the past, one hypothesis at a time. Now I take it for granted, because I’ve been behind the curtain for a couple of decades. But to my 9-year-old self, it was revolutionary.

This has all come roaring back because of something that came in the mail this week. Or rather, something that had been waiting in the mailroom for a while, that I finally picked up this week: a package from Mark Hallett, enclosing a copy of his 2018 dinosaur calendar. And also this:


An original sketch, which he gave to me as a Christmas present. The published version appears on one of the final pages of our book, where we discuss the boundaries between the known – the emerging synthesis of sauropod biology that we hoped to bring to a broader audience by writing the book in the first place – and the unknown – the enduring mysteries that Mark and I think will drive research in sauropod paleobiology for the next few decades. Presented without a caption or commentary, the sketch embodies sauropods as we see them: emerging from uncertainty and ignorance one hard-won line at a time, with ever-increasing solidity.

Thank you, Mark, sincerely. That sketch, what it evokes, both for me now and for my inner 9-year-old – you couldn’t have chosen a better gift. And I couldn’t be happier. Except perhaps to someday learn that our book exploded in the mind of a curious kid the way that The New Dinosaur Dictionary did for me 34 years ago, a time that now seems as distant and romantic as the primeval forests of the Mesozoic.