I was back in Utah the week before last, looking for monsters with Brian Engh and Jessie Atterholt. It was a successful hunt – more about that another time.
We made a run to Fruita, Colorado, to visit Dinosaur Journey. I was just there in May, picking up Haplocanthosaurus caudals for CT scanning (and other fun things). We picked up another specimen this time, for a different project – more on that in another post, too.

Not this one, but like this one. An apatosaurine middle caudal vertebra, MWC 5742, in left lateral view.
There’s a nice ceratopsian exhibit up at Dinosaur Journey right now, with cast skulls from many of the new ceratopsians that have been described in the past couple of decades. My near-favorites were Zuniceratops and Diabloceratops, both of which are small enough that they must have been adorable in life (think pony-sized and big-horse-sized, respectively).
My absolute favorite, of course, was this little thing:
I can tell you exactly how Aquilops came to be on display there. Julia McHugh printed a copy of the holotype, because it’s freely available to the world. And she used Brian’s Aquilops head recon in the signage (correctly, with attribution), because it’s also freely available to the world. In fact, I’ve seen Aquilops on display at several museums now for just those reasons. So, folks, if you want your critters to be seen, make them open. Hiring a paleoartist to do some awesome artwork that can be released under a CC-BY license (because you paid them, not because you asked them to give their art away for “exposure”) is a huge help.
We had to geek out a little about unexpectedly finding ‘our’ dinosaur on display:
But of course it is not our dinosaur anymore – that’s the whole point. Aquilops belongs to the world.
For more on our trip, see Jessie’s posts here, here, and here.
Cabinet of curiosities: a visit to Peter Dodson’s office
June 17, 2018
I’ve known who Peter Doson was since I was nine years old. A copy of The Dinosaurs by William Stout and William Service, with scientific content by Peter, showed up at my local Waldenbooks around the same time as the New Dinosaur Dictionary – much more on The Dinosaurs another time. Then when I started doing research as an undergrad at the University of Oklahoma, Peter’s chapter on sauropod paleobiology in The Dinosauria (Dodson 1990) was one of the first things I read. At the SVP banquet in 2000, I ran into Peter and he shook my hand and said, “Sauroposeidon rocks!” I managed not to swoon – barely.
When I was in Philadelphia this March, Peter invited me to the UPenn vet school for an afternoon. He gave me a tour of the building with its beautiful lecture halls and veterinary dissection lab, and then we spent a couple of hours rummaging around in his office. That was one of the highlights of the trip, because it turns out that Peter and I are both comparative anatomy junkies. He’s been at it for longer, and he has more regular access to dead critters and more space to display them, so his collection puts mine to shame. But he kindly let me play with study whatever I wanted.
In fact, he went farther than that: he quizzed me. A lot. I take it that it’s a right of passage for people coming through Peter’s office. It was an enjoyable challenge, and I got photos of a few quiz items so you can play, too. This transversely-sectioned skull was one of the first mystery specimens. I figured it out pretty quickly, for reasons I’ll reveal in a future post. Can you? Post your IDs in the comments.
I don’t remember all of the quiz items. One of them was the dark skull lying upside down behind the ratite skeleton in the photo up top. I had to figure that one out without picking it up, so you have about as much information as I did. We’ll call that one quiz item #2. Embiggenate for all the clues you’ll need.
This wasn’t a quiz item, just something cool: the skull of a large dog with the top of the cranium removed. In the paired cavities at the top, we’re looking down through the frontal sinuses to see the respiratory turbinates in the nasal cavities. The single large space behind is the braincase. At the very front, in the shadowed recess, you can see the cribriform plate of the ethmoid bone, perforated with dozens of holes to let the olfactory nerve endings through from the back of the nasal cavities. We have the same thing on a smaller scale a centimeter or two behind our brows, and oriented horizontally. But what really drew my attention were the linear arrays of paired foramina arcing across the floor of the braincase – holes to let cranial nerves and the internal jugular veins out of the skull, and the internal carotid arteries in. We have the same structures in our heads, of course, but the layout isn’t as neat – our big brains, bent forward at such a sharp angle from the spinal cord, have squished things around a bit.
Here are more skulls, garnished with a human femur and a ratite pelvis and synsacrum. Peter quizzed me on the Archaeoceratops (front) and Auroraceratops (back) skulls on the far right. I IDed them correctly, but only because I spent some quality time with the Alf Museum’s casts when I was reconstructing the skull of Aquilops. On the far left is an alligator skull with injected arteries, which is definitely worth a closer look.
Here’s a dorsal view of the injected alligator skull. The arteries have been injected with red resin, and then all of the soft tissue has been macerated away, leaving just the bone and the internal cast of the arterial tree. Some of the midline bone has been removed here to reveal the courses of the cerebral, ethmoid, and nasal arteries. Also note the artery looping around in the left supratemporal fenestra.
Here’s a look into the right side of the back of the skull, where the lateral wall of the braincase has been Dremeled away to show the course of the internal carotid artery. It’s a very cool demonstration of a bit of anatomy that I had never seen before. For more on cranial blood vessels in crocs, check out the obscenely well-illustrated recent paper by Porter et al. (2016).
To my chagrin, that’s all the good photos I got from Peter’s office – we were too busy passing specimens back and forth and frankly geeking out like a couple of kids. One of my favorite specimens from his office was the mounted foot skeleton of a horse, which Jessie Atterholt had prepared for him when she was his student at UPenn. It’s such a cool preparation that it captured my imagination, and when I got back I warned Jessie that if she didn’t get her own articulated horse foot posted soon, I was going to make something similar for myself and steal her thunder. A couple of months later, her horse foot is up on Instagram – I featured it in this post – and my cow foot is still sitting in pieces, waiting for me to put it together. Here’s a shot of Jessie’s, to hopefully prod me into action:
I didn’t get all of Peter’s quiz questions correct. I knew that the endocast of the pharyngeal pouch in a horse was an endocast, but of what I didn’t know, although I did correctly identify the hyoid apparatus of a horse, mounted separately. And there was a partial cetacean jaw that I misidentified as a shark (in my defense, it was from one of the small, short-faced weirdos). Still, Peter said that I’d done as well as anyone else ever had. That was nice to hear, but I was already happy to have gotten to see and talk about so many cool things with a fellow connoisseur. Thanks, Peter, for a wonderful afternoon, and for permission to post these pictures. I am looking forward to a rematch!
References
- Dodson, P. 1990. Sauropod paleoecology. In: D.B. Weishampel, P. Dodson, P., & H. Osmolska, (eds), The Dinosauria, 402-407. University of California Press, Berkeley.
- Porter, W.R., Sedlmayr, J.C. and Witmer, L.M., 2016. Vascular patterns in the heads of crocodilians: blood vessels and sites of thermal exchange. Journal of Anatomy 229(6): 800-824.
- Stout, W., Service, W., and Preiss, B. 1984. The Dinosaurs: A Fantastic View of a Lost Era. Bantam Dell Publishing Group, 160pp.
In quest of monsters – last week’s Utah adventure
May 17, 2018
Last Wednesday, May 9, Brian Engh and I bombed out to Utah for a few days of paleo adventures. Here are some highlights from our trip.
We started at a Triassic tracksite on Thursday. But I’m not going to post any pictures of the tracks – those will be coming to a Brian Engh joint near you in the future. Instead, I’m going to talk about this little male collared lizard whose territory included the tracksite. He was fearless – didn’t want to run off and leave us yahoos wandering around his patch of desert unsupervised. Brian tickled his chin at one point.
Getting this close to him is how I got shots like this one:
Click through to the big version, it’s worth it.
One more shot of a couple of cool desert dwellers. I was so fixated on the lizard that I didn’t realize until later that Brian was in the frame, taking a much-needed hydration break.
On Friday we had a temporary breaking of the fellowship. I went to Fruita, Colorado, to visit the Dinosaur Journey museum. You’ve seen photos from DJ here before, from the 2014 Mid-Mesozoic Field Conference and the 2016 Sauropocalypse. Here’s an apatosaur pubis with some obvious bite marks on the distal end. This is on display next to a similarly-bitten ischium, which is shown in the MMFC14 post linked above.
Here’s a big apatosaur cervical, in antero-ventral view, with a dorsal rib draped over its left side. The cervical ribs are not fused in this specimen, so it was probably still growing. Here’s a labeled version:
The short centrum and nearly-vertical transverse processes indicate that this is a pretty posterior cervical, possibly a C13 or thereabouts. This specimen was over the fence in the exhibit area and I couldn’t throw a scale bar at it, but I’d describe it as “honkin'”. Like most of the apatosaur material at DJ, this vert is from the Mygatt-Moore Quarry.
Of course the real reason I was at Dinosaur Journey was to see the Snowmass Haplocanthosaurus that John Foster and I described back in 2014. You may remember that its caudal vertebrae have wacky neural canals. You may also have noticed a recent uptick in the number of posts around here about wacky neural canals. The game is afoot.
But as cool as they were, the Triassic tracks, the collared lizard, and even the Snowmass Haplo were only targets of opportunity. Brian and I had gone to Utah for this:
That photo was taken by Paige Wiren of Salt Lake City, on the day that she discovered that bone eroding out of a riverbank, just as you see it.
Here’s Paige with the element, which proved to be the left femur of an apatosaurine sauropod. It’s face down in these photos, so we’re looking at the medial side. The articular head is missing from the proximal end – it should be facing toward Paige’s right knee in the above photo – but other than that and a few negligible nicks and dings, the femur was complete and in really good shape.
Paige did the right thing when she found the femur: she contacted a paleontologist. Specifically, she asked a friend, who in turn put her in touch with Carrie Levitt-Bussian, the paleontology Collections Manager at the Natural History Museum of Utah. Based on Paige’s photos and maps, Carrie was able to identify the element as a dinosaur femur, probably sauropod, within the territory of the BLM Hanksville Field Office. John Foster, the Director of the Museum of Moab, has a permit to legally collect vertebrate fossils from that area, and he works on sauropods, so Carrie put Paige in touch with John and with ReBecca Hunt-Foster, the district paleontologist for the BLM’s Canyon Country District in Utah.
Now, I know there’s a lot of heated rhetoric surrounding the Bureau of Land Management, but whatever your political bent, remember this: those are our public lands. Therefore the fossils out there are the collective property of all of us, and we should all be upset if they get poached or vandalized. Yes, that is a big problem – the Brontomerus type quarry was partially poached before the bones we have now were recovered, and vandalism at public fossil sites in Utah made the national news while we were out there.
So that’s what we went to do: salvage this bone for science and education before it could be lost to erosion or asshats. Brian and I were out there to assist John, ReBecca, and Paige, who got to see her find come out of the ground and even got her hands dirty making the plaster jacket. Brian and John headed out to the site Friday morning and met up with Paige there, and ReBecca and I caravanned out later in the day, after I got back from Fruita.
But I’m getting ahead of myself a bit. We didn’t have to jacket the whole thing. It had naturally broken into three pieces, with thin clay infills at the breaks. So we just slid the proximal and middle thirds away as we uncovered them, and hit any loose-looking pieces with consolidant. The distal third was in more questionable shape, so we did make a partial jacket to hold it together.
We also got to camp out in gorgeous country, with spectacular (and welcome) clouds during the day and incredible starry skies at night.
We floated the femur out of the site using the Fosters’ canoe at the end of the day on Saturday, and loaded up to head back to Moab on Sunday. At one point the road was empty and the sky was not, so I stood on the center line and took some photos. This one is looking ahead, toward I-70 and Green River.
And this one is looking behind, back toward Hanksville.
Here are John and Brian with the femur chunks in one of the back rooms of the Museum of Moab. The femur looks oddly small here, but assembled it was 155 cm (5’1″) long and would have been 160 (5’3″) or more with the proximal head. Smaller than CM 3018 and most of the big mounted apatosaurs, but nothing to sneeze at.
What happens to it next? It will be cleaned, prepped, and reassembled by the volunteers and exhibit staff at the Museum of Moab, and eventually it will go on public display. [Update, 19 October 2021: it is now on display!] Thousands of people will get to see and learn from this specimen because Paige Wiren made the right call. Go thou and do likewise.
That was the end of the road for the femur (for now), but not for Brian and me. We had business in Cedar City and St. George, so we hit the road Sunday afternoon. Waves of rainclouds were rolling east across Utah while we were rolling west, with breaks for sunlight in between. I miiiight have had to swerve a couple of times when all the scenery distracted me from driving, and I definitely made an obnoxious number of stops to take pictures.
I don’t remember which scenic overlook this was, but it was a pretty darned good view. This is another one that will reward embiggening – check out those mesas marching off into the distance.
In Cedar City we were guests of Andrew R.C. Milner, Site Paleontologist and Curator at the St. George Dinosaur Discovery Site at Johnson Farm (SGDS). We spent most of Monday at SGDS, getting our minds comprehensively blown by the amazing trace and body fossils on display. It was my first time visiting that museum, but it sure as heck won’t be the last.
I didn’t take nearly enough photos in St. George – too busy helping Brian do some filming for a future project – but I did get this gem. This is a Eubrontes track, from a Dilophosaurus-sized theropod. This is a positive track, a cast of the dinosaur’s foot made by sandy sediment that filled the natural mold formed when the dino stepped into mud. The high clay content of the mud recorded the morphology of the foot in fine detail, including the bumps of individual scales on the foot pads. The vertical streaks were cut into the side of the track by similar scales as the animal’s foot pushed into the mud.
The full story of the Johnson Farm tracks and trackmakers is beautifully told in the book Tracks in Deep Time: The St. George Dinosaur Discovery Site at Johnson Farm, by Jerry Harris and Andrew Milner. I hadn’t read it before, so I picked up a copy in the gift shop and I’ve been devouring it. As a professional scientist, educator, and book author myself, I’m jealous of what Jerry and Andrew produced – both the text and the abundant full-color illustrations are wonderfully clear, and the book is well-produced and very affordable.
From St. George we hit the road home, and rolled into Claremont just before midnight on Monday. It was a whirlwind tour – 1800 miles, three museums, and two fossil sites in six days – and my brain is still fizzing with all of the things we got to see and do.
One of the many pros of having a professional artist as a friend is that minimal hospitality, like letting him crash on my couch, is sometimes rewarded with original art. Brian was already gone when I got up Tuesday morning, but this was waiting for me on the dining room table. (Want your own? Help Brian make more monsters here.)
I owe plenty of thanks myself: to the Foster and Milner families for their near-maximal hospitality, to Julia McHugh of Dinosaur Journey for assistance in collections, to Diana Azevedo, Jalessa Spor, Jerry Harris, and the rest of the SGDS staff for being such gracious hosts, to Brian for being such a great friend and traveling companion, and most of all to Paige Wiren for finding the apato femur and helping us save it for science. You’re all top-notch human beings and I hope our paths cross again soon.
So, here’s a cool thing that happened at Norwescon. On Saturday afternoon, there was an autograph signing session. Probably to the surprise of no-one, a lot more people were interested in having things signed by the other two guests of honor, Galen Dara and Ken Liu, than by me. But happily I was situated between them so I coasted a bit on the interest they drew. There was quite a bit of downtime in the two-hour session, so I had the chance to chat with both Galen and Ken. That was actually a highlight of the con for me – I was hoping for a chance to get to know my fellow guests of honor a bit, instead of just passing them in the hallways as we all went off to our separate scheduled activities.
Whenever Galen Dara wasn’t signing autographs, she was drawing. Makes sense, right? You probably don’t get to be as professionally successful as she is if making art isn’t compulsive. And it was just my luck that the proximate cool thing around to draw was the skull of Aquilops – I was signing prints of my skull recon, and I had along the reconstructed cast skull that I use for education and outreach. So I had the fairly trippy experience of watching an award-winning artist at the top of her game draw ‘my’ critter.
As you can see from Galen’s Instagram, she draws and paints a lot of skulls, and she spends a lot of time exploring the geometric underpinnings of skulls. She warned me at the outset that her Aquilops skull would be more impressionistic than photo-realistic – her interpretation of Aquilops as organic art. I think it looks pretty great; I have to trace stuff to get the proportions that close on the first go. And as I recently mentioned in another post, it’s always mesmerizing for me to see how a visual artist can conjure form, weight, and texture one pencil-stroke at a time.
Many thanks to Galen for permission to post these pics, and for her interest in my favorite non-sauropod.

Norwescon 41 Guests of Honor: Ken Liu, Galen Dara, and, er, me. Mike would like to remind you that you can get your own ‘Kylo Stabbed First’ t-shirt here.
The week before last I was fortunate to be the Science Guest of Honor at Norwescon 41 in Seattle (as threatened back when). I had a fantastic time. I got to give talks on binocular stargazing and the sizes of the largest sauropods and whales (ahem), participate on panels on alien biology and creature drawing, and meet a ton of cool people, including my fellow Guests of Honor, multiple-award-winning author Ken Liu and multiple-award-winning artist Galen Dara, both of whom turned out to be humble, easygoing, regular folks (if frighteningly talented).
I also had a lot of great conversations with folks who were attending the con, which is exactly what I wanted. One of the most interesting was a hallway conversation with a fellow DM named Shawn Connor. He had a great question for me, which I liked so much I wanted to answer it here on the blog. Here’s his question, copied with permission from a follow-up email:
I run tabletop RPGs, and in my current game one of the characters is a caveman type who naturally grew up hunting dinosaurs. As one does. His weapon is a dinosaur bone, customized and used as a club. I have attached the picture that he came up with [below]. Now understanding the picture is obviously not of a real dinosaur bone – it’s probably a chicken bone or a cow bone or something – let’s assume for the sake of this exercise that it is and that it is four feet long stem to stern. Given that, two questions: discounting the extra bling attached how heavy would such a bone be, and what kind of dinosaur could it have come from?
I’m going to answer those questions out of order. Advance warning: this will be a loooong post that will go down several rabbit holes that are likely of more intense interest to me, personally, than to anyone else on the planet. Read on at your own risk.
Whose femur is in the image?
First, Shawn is correct in noting that the femur in the image provided by his player is not a dinosaur femur. The prominent trochanters and spherical head offset on a narrow neck clearly make it a mammal femur, and if it’s four feet long, it could only have come from an elephant or an indricothere. Or a giant humanoid, I suppose, which is what the anatomy of the bone in the image most closely resembles. (It also appears to be foreshortened to make the distal end look bigger, or deliberately distorted to enhance the clubby-ness.)
But let’s play along and assume it’s from a non-human mammal. How big? Back in 2016 I was fortunate to get to measure most of the mounted large mammal skeletons at the Museum of Osteology in Oklahoma City, along with Tyler Hunt, then a University of Oklahoma undergrad and now finishing up his MS thesis under my mentor, Rich Cifelli.* The mounted elephant at the Museum of Osteology has a shoulder height of 254 cm (8 ft, 4 in) and a femur length of 102 cm (3 ft, 4 in). Assuming isometric scaling, a world record elephant with a shoulder height of 366 cm (12 ft) would have a femur length of 147 cm (4 ft, 10 in). So a four-foot (122 cm) femur would belong to an elephant roughly in the middle of that range, about ten feet (3 m) tall at the shoulder. That’s the size of the big bull elephant mounted at the Field Museum in Chicago.

The big mounted bull elephant at the Field Museum is 10 feet tall at the shoulder and weighed 6 tons in life. Note Mike for scale on the lower right. He and the elephant are about equidistant from the camera, so he should make a roughly accurate scale bar. Photo from our visit in 2005!
* Two further notes: first, I have roughly a zillion awesome photos from that 2016 visit to the Museum of Osteology, both of the specimens and of Tyler and me measuring them – not having posted them yet is one of the things I was whingeing about in the post that kicked off our return-to-weekly-posting thing this year. And second, I owe a belated and public thanks to the folks at the Museum of Osteology for accommodating Tyler and me. They helped us with ladders and so on and basically gave us free rein to play with collect data from their mounted skeletons, which was incredibly generous and helpful, and fortunately reflects the pro-research and pro-researcher attitude of most museums.
Which dinos had four-foot femora?
As for what kind of dinosaur a four-foot femur could have come from, we can rapidly narrow it down to a handful of clades: sauropods, ornithopods, theropods, and stegosaurs.
- Sauropods. The longest complete femora of Patagotitan are 238 cm (7 ft, 10 in; Carballido et al. 2017), and an incomplete femur of Argentinosaurus has an estimated complete length of 250 cm (8 ft, 2 in; Mazzetta et al. 2004). So a four-foot femur would not be from a particularly large sauropod – something about elephant-sized, as you might expect from the elephant comparison above. Our old friend Haplocanthosaurus will fit the bill, as we’ll see in a bit.
- Ornithopods. Femora of 172 cm (5 ft, 8 in) are known for the hadrosaurs Shantungosaurus (Hone et al. 2014) and Huaxiaosaurus (Zhao and Li 2009), and Zhao et al. (2007) reported a 170 cm (5 ft, 7 in) femur for Zhuchengosaurus (Huaxiaosaurus and Zhuchengosaurus may be junior synonyms of Shantungosaurus). But those are all monsters, well over 10 metric tons in estimated mass. So a four-foot femur would be from a large but not insanely large hadrosaur.
- Theropods. Among the largest theropods, the holotype of Giganotosaurus has a femur length of 143 cm (4 ft, 8 in; Coria and Salgado 1995), and ‘Sue’ the T. rex (a.k.a. FMNH PR2081) has a right femur 132 cm long (4 ft, 4 in; Brochu 2003). So a four-foot femur from a theropod would definitely be from one of the monsters. The femur of Saurophaganax was 113.5 cm long (Chure 1995), just under four feet, which I only note as an excuse to use the above photo, which I adore.
- Stegosaurs. I don’t know the longest femur that has been recovered from a stegosaur, but getting in the ballpark is easy. NHMUK PV R36730 has a femur 87 cm long, and the whole animal was approximately 6 m long (Maidment et al. 2015). Partial bits and bobs of the largest stegosaurs suggest animals about 9 m long, implying a femur length of about 130 cm (4 ft, 3 in), or just over the line.
I think that’s it. I don’t know of any ceratopsians or ankylosaurs with femora long enough to qualify – I assume someone will let me know in the comments if I’ve forgotten any.
How much would a four-foot femur weigh?
There are a couple of ways to get to the answer here. One is to use Graphic Double Integration, which is explained in this post.
Limb bones are not solid – in terrestrial tetrapods there is virtually always a marrow cavity of some sort, and in marine tetrapods the limb bones tend to be cancellous all the way through. Estimating the mass of a limb bone is a lot like estimating the mass of a pneumatic bone: figure out the cross-sectional areas of the cortex and marrow cavity (or air space if the bone is pneumatic), multiply by the length of the element to get volumes, and multiply those volumes by the density of the materials to get masses. I piled up all the relevant numbers and formulas in Tutorial 24, a move that has frequently made me grateful to my former self (instead of cussing his lazy ass, which is my more usual attitude toward Past Matt).
Sauropod limb bones are pretty darned dense, with extremely thick cortices and smallish marrow spaces that are not actually hollow (tubular) but are instead filled with trabecular bone. My gut feeling is that even a four-foot sauropod femur would be almost too heavy to lift, let alone wield as a club, so in the coming calculations I will err in the direction of underestimating the mass, to give our hypothetical caveman the best possible chance of realizing his dream.
Some of the proportionally thinnest cortices I’ve seen in sauropod limb bones are those of the macronarian Haestasaurus becklesii NHMUK R1870, which Mike conveniently showed in cross-section in this post. I could look up the actual dimensions of the bones (in Upchurch et al 2015: table 1 – they passed the MYDD test, as expected), but for these calculations I don’t need them. All I need are relative areas, for which pixels are good enough.
First, I took Mike’s photo into GIMP and drew two diameters across each bone, one maximum diameter and a second at right angles. Then I drew tick marks about where I think the boundaries lie between the cortex and the trabecular marrow cavity. Next, I used those lines as guides to determine the outer diameters (D) and inner diameters (d) in pixels, as noted in the image.
For the radius, on the left, the mean diameters are D = 891 and d = 648. I could divide those by 2 to get radii and then plug them into the formula for the area of a circle, etc., but there’s an easier way still. For a tubular bone, the proportional area of the inner circle or ellipse is equal to k^2, where k = r/R. Or d/D. (See Wedel 2005 and Tutorial 24 for the derivation of that.) For the Haestasaurus radius (the bone, not the geometric dimension), d/D = 0.727, and that number squared is 0.529. So the marrow cavity occupies 53% of the cross-sectional area, and the cortex occupies the other 47%.
For the ulna, on the right, the mean diameters are D = 896 and d = 606, d/D = 0.676, and that number squared is 0.457. So in this element, the marrow cavity occupies 46% of the cross-sectional area, and the cortex occupies the other 54%.
(For this quick-and-dirty calculation, I am going to ignore the fact that limb bones are more complex than tubes and that their cross-sectional properties change along their lengths – what I am doing here is closer to Fermi estimation than to anything I would publish. And we’ll ground-truth it before the end anyway.)

Left: rat humerus, right: mole humerus. The mole humerus spits upon my simple geometric models, with extreme prejudice. From this post.
You can see from the photo (the Haestasaurus photo, not the mole photo) that neither bone has a completely hollow marrow cavity – both marrow cavities are filled with trabecular bone. By cutting out good-looking chunks in GIMP and thresholding them, I estimate that these trabecular areas are about 30% bone and 70% marrow (actual marrow space with no bone tissue) by cross-sectional area. According to Currey and Alexader (1985: 455), the specific gravities of fatty marrow and bone tissue are 0.93 and 2.1, respectively. The density of the trabecular area is then (0.3*2.1)+(0.7*0.93) = 1.28 kg/L, or about one quarter more dense than water.
But that’s just the trabecular area, which accounts for about one half of the cross-sectional area of each bone. The other half is cortex, which is probably close to 2.1 kg/L throughout. The estimated whole-element densities are then:
Radius: (0.53*1.28)+(0.47*2.1) = 1.67 kg/L
Ulna: (0.46*1.28)+(0.54*2.1) = 1.72 kg/L
Do those numbers pass the sniff test? Well, any skeletal elements that are composed of bone tissue (SG = 2.1) and marrow (SG = 0.93) are constrained to have densities somewhere between those extremes (some animals beat this by building parts of their skeletons out of [bone tissue + air] instead of [bone tissue + marrow]). We know that sauropod limb bones tend to have thick cortices and small marrow cavities, and that the marrow cavities are themselves a combination of trabecular bone and actual marrow space, so we’d expect the overall density to be closer to the 2.1 kg/L end of the scale than the 0.93 kg/L end. And our rough estimates of ~1.7 kg/L fall about where we’d expect.
To convert to masses, we need to know volumes. We can use Haplocanthosaurus here – the femur of the holotype of H. priscus, CM 572, is 1275 mm long (Hatcher 1903), which is just a hair over four feet (4 ft, 2.2 in to be exact). The midshaft width is 207 mm, and the proximal and distal max widths are 353 and 309 mm, respectively. I could do a for-real GDI, but I’m lazy and approximate numbers are good enough here. Just eyeballing it, the width of the femur is about the same over most of its length, so I’m guessing the average width is about 23 cm. The average width:length ratio for the femora of non-titanosaur sauropods is 3:2 (Wilson and Carrano 1999: table 1), which would give an anteroposterior diameter of about 15 cm and an average diameter over the whole length of 19 cm. The volume would then be the average cross-section area, 3.14*9.5*9.5, multiplied by the length, 128 cm, or 36,273 cm^3, or 36.3 L. Multiplied by the ~1.7 kg/L density we estimated above, that gives an estimated mass of 62 kg, or about 137 lbs. A femur that was exactly four feet long would be a little lighter – 86.6% as massive, to be exact, or 53.4 kg (118 lbs).
I know that the PCs in RPGs are supposed to be heroes, but that seems a little extreme.
But wait! Bones dry out and they lose mass as they do so. Lawes and Gilbert (1859) reported that the dry weight of bones of healthy sheep and cattle was only 74% of the wet mass. Cows and sheep have thinner bone cortices than sauropods or elephants, but it doesn’t seem unreasonable that a dry sauropod femur might only weigh 80% as much as a fresh one. That gets us down to 43 kg – about 95 lbs – which is still well beyond what anyone is probably going to be wielding, even if they’re Conan the Cimmerian.
I mentioned at the top of this section that there are a couple of ways to get here. The second way is to simply see what actual elephant femora weigh, and then scale up to dinosaur size. According to Tefera (2012: table 1), a 110-cm elephant femur has a mass of 21.5 kg (47 lbs). I reckon that’s a dry mass, since the femur in question had sat in a shed for 50 years before being weighed (Tefera 2012: p. 17). Assuming isometry, a four-foot (122 cm) elephant femur would have a dry mass of 29.4 kg (65 lbs). That’s a lot lighter than the estimated mass of the sauropod femur – can we explain the discrepancy?

Femora of a horse, a cow, and an elephant (from left to right in each set), from Tefera (2012: plate 1).
I think so. Elephant femora are more slender than Haplocanthosaurus femora. Tefera (2012) reported a circumference of 44 cm for a 110-cm elephant femur. Scaling up from 110 cm to 122 cm would increase that femur circumference to 49 cm, implying a mean diameter of 15.6 cm, compared to 19 cm for the Haplo femur. That might not seem like a big difference, but it means a cross-sectional area only 2/3 as great, and hence a volume about 2/3 that of a sauropod femur of the same length. And that lines up almost eerily well with our estimated masses of 29 and 43 kg (ratio 2:3) for the four-foot elephant and sauropod femora.
A Better Weapon?
Could our hypothetical caveman do better by choosing a different dinosaur’s femur? Doubtful – the femora of ‘Sue’ are roughly the same length as the Haplo femur mentioned above, and have similar cross-sectional dimensions. Hadrosaur and stegosaur femora don’t look any better. Even if the theropod femur was somewhat lighter because of thinner cortices, how are you going to effectively grip and wield something 15-19 cm in diameter?
I note that the largest axes and sledgehammers sold by Forestry Suppliers, Inc., are about 3 feet long. Could we get our large-animal-femur-based-clubs into the realm of believability by shrinking them to 3 feet instead of 4? Possibly – 0.75 to the third power is 0.42. That brings the elephant femur club down to 12.3 kg (27 lbs) and the sauropod femur club down to 18 kg (40 lbs), only 2-3 times the mass of the largest commonly-available sledgehammers. I sure as heck wouldn’t want to lug such a thing around, much less swing it, but I can just about imagine a mighty hero doing so.
Yes, there were longer historical weapons. Among swing-able weapons (as opposed to spears, etc.), Scottish claymores could be more than four feet long, but crucially they were quite light compared to the clubs we’ve been discussing, maxing out under 3 kg, at least according to Wikipedia.

T. rex FMNH PR2081 right fibula in lateral (top) and medial (bottom) views. Scale is 30 cm. From Brochu (2003: fig. 97).
If one is looking for a good dinosaur bone to wield as a club, may I suggest the fibula of a large theropod? The right (non-pathologic) fibula of ‘Sue’ is 103 cm long (3 ft, 4.5 in), has a max shaft diameter just under 3 inches – so it could plausibly be held by (large) human hands, and it probably massed something like 8-9 kg (17-20 lbs) in life, based on some quick-and-dirty calculations like those I did above. The proximal end is even expanded like the head of a war club. The length and mass are both in the realm of possibility for large, fit, non-supernaturally-boosted humans. Half-orc barbarians will love them.
And that’s my ‘expert’ recommendation as a dice-slinging paleontologist. Thanks for reading – you have Conan-level stamina if you got this far – and thanks to Shawn for letting me use his question to freewheel on some of my favorite geeky topics.
References
- Brochu, C.A., 2003. Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. Journal of Vertebrate Paleontology 22(supplement to no. 4), pp. 1-138.
- Chure, D.J., 1995. A reassessment of the gigantic theropod Saurophagus maximus from the Morrison Formation (Upper Jurassic) of Oklahoma, USA. In 6th Symposium on Mesozoic terrestrial ecosystems and biotas, short papers. Edited by A.-L. Sun and Y.-Q. Wang. China Ocean Press, Beijing, China (pp. 103-106).
- Coria, R.A. and Salgado, L., 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377(6546), p.224.
- Hatcher, J.B. 1903. Osteology of Haplocanthosaurus with description of a new species, and remarks on the probable habits of the Sauropoda and the age and origin of the Atlantosaurus beds; additional remarks on Diplodocus. Memoirs of the Carnegie Museum 2:1-75.
- Hone, D.W.E., Sullivan, C., Zhao, Q., Wang, K. and Xu, X., 2014. Body size distribution in a colossal hadrosaurid death assemblage from the Upper Cretaceous of Zhucheng, Shandong Province, China. Hadrosaurs. Indiana University Press, Bloomington, pp.524-531.
- Lawes, J.B. and Gilbert, J.H., 1859. Experimental inquiry into the composition of some of the animals fed and slaughtered as human food. Philosophical Transactions of the Royal Society of London 149, pp.493-680.
- Maidment, S.C.R., Brassey, C. and Barrett, P.M., 2015. The postcranial skeleton of an exceptionally complete individual of the plated dinosaur Stegosaurus stenops (Dinosauria: Thyreophora) from the Upper Jurassic Morrison Formation of Wyoming, USA. PloS ONE 10(10), p.e0138352.
- Mazzetta, G.V., Christiansen, P. and Fariña, R.A., 2004. Giants and bizarres: body size of some southern South American Cretaceous dinosaurs. Historical Biology, 16(2-4), pp.71-83.
- Tefera, M., 2012. Kinematics and comparative anatomy of some limb bones of the African elephant (Loxodonta africana) and large domestic animals. J. Vet. Anat. 5(2), pp.15-31.
- Wedel, M.J. 2005. Postcranial skeletal pneumaticity in sauropods and its implications for mass estimates; pp. 201-228 in Wilson, J.A., and Curry-Rogers, K. (eds.), The Sauropods: Evolution and Paleobiology. University of California Press, Berkeley.
- Wilson, J.A. and Carrano, M.T., 1999. Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25(2), pp.252-267.
- Zhao, X., and D. Li. 2009. Huaxiaosaurus aigahtens, gen, et sp, nov. Dinosaur Research 8:1–36. [Chinese with English abstract]
- Zhao, X., D. Li, G. Han, H. Zhao, F. Liu, L. Li, and X. Fang. 2007. Zhuchengosaurus maximus from Shandong Province. Acta Geoscientica Sinica 2:111–1222.
Martin Grötschel’s opening address to the APE 2018 conference (Academic Publishing in Europe)
March 28, 2018
The opening remarks by the hosts of conferences are usually highly forgettable, a courtesy platform offered to a high-ranking academic who has nothing to say about the conference’s subject. NOT THIS TIME!
This is the opening address of APE 2018, the Academic Publishing in Europe conference. The remarks are by Martin Grötschel, who as well as being president of the host institution, the Berlin Brandenburg Academy of Sciences and Humanities, is a 25-year veteran of open-access campaigning. and a member of the German DEAL negotiating team.
Here are some choice quotes:
1m50s: “I have always been aware of the significant imbalance and the fundamental divisions of the academic publication market. Being in the DEAL negotiation team, this became even more apparent …”
2m04s: “On the side of the scientists there is an atomistic market where, up to now and unfortunately, many of the actors play without having any clue about the economic consequences of their activities.”
2m22s: “In Germany and a few other countries where buyer alliances have been organised, they are, as expected, immediately accused of forming monopolies and they are taken to court — fortunately, without success, and with the result of strengthening the alliances.”
2m38s: “On the publishers’ side there is a very small number of huge publication enterprises with very smart marketing people. They totally dominate the market, produce grotesque profits, and amazingly manage to pretend to be the Good Samaritans of the sciences.”
2m27s: “And there are the tiny [publishers …] tentatively observed by many delegates of the big players, who are letting them play the game, ready to swallow them if an opportunity comes up.”
3m18s: “When you, the small publishers, discuss with the representatives of the big guys, these are most likely very friendly to you. But […] when it comes to discussing system changes, when the arguments get tight, the smiles disappear and the greed begins to gleam.”
3m42s: “You will hear in words, and not implicitly, that the small academic publishers are considered to be just round-off errors, tolerated for another while, irrelevant for the world-wide scientific publishing market, and having no influence at all.”
4m00s: “One big publisher stated: if your country stops subscribing to our journals, science in your country will be set back significantly. I responded […] it is interesting to hear such a threat from a producer of envelopes who does not have any idea of the contents.”
4m39s: “Will the small publishers side with the intentions of the scholars? Or will you try to copy the move towards becoming a packaging industry that exploits the volunteer work of scientists and results financed by public funding?”
5m55: “I do know, though, that the major publishers are verbally agreeing [to low-cost Gold #OpenAccess] , but not acting in this direction all, simply to maintain their huge profit margins.”
6m06s: “In a market economy, no-one can argue against profit maximisation [of barrier-based scholarly publishers]. But one is also allowed to act against it. The danger may be really disruptive, instead of smooth moves in the development of the academic publishing market.”
6:42: “You may not have enjoyed my somewhat unusual words of welcome, but I do hope that you enjoy this year’s APE conference.”
It’s just beautiful to hear someone in such a senior position, given such a platform, using it say so very clearly what we’re all thinking. (And as a side-note: I’m constantly amazed that so many advocates are so clear, emphatic and rhetorically powerful in their second, or sometimes third, language. Humbling.)
As RLUK’s David Prosser noted: “I bet this wasn’t what the conference organisers were expecting. A fabulous, hard-hitting polemic on big publishers #OA.”
Note. This post is adapted from a thread of tweets that I posted excerpting the video.
The mounted Mamenchisaurus at Wollaton Hall
March 14, 2018
One of the field trips for last year’s SVPCA meeting was a jaunt to Nottingham to see the Dinosaurs of China exhibit at Wollaton Hall. We got to see a lot of stuff, including original fossils of some pretty famous feathered dinos – but of course what really captured our attention was the mounted Mamenchisaurus. This is a cast of the good old M. hochuanensis holotype specimen that has been put up all over the world, including in a car-park in Copenhagen, on stilts in Chicago and even in a flooded basement in Slovenia.
Wollaton Hall houses the Nottingham Museum of Natural History, which is a fantastic trove of weird and wonderful things from around the world. We should really post about those things – I had them in mind when I was recently lamenting my lousy conversion rate of museum visit photos into blog posts. That will have to wait for another time. I’ll just note in closing that grand buildings and mounted sauropods go together like peanut butter and chocolate, and that this field trip was outstanding.
Brontosmash: The Field Trip (the teaser)
February 13, 2018
This past weekend I was camping up the coast at Hearst San Simeon State Park, with my son, London, and Brian Engh.
We went to see the elephant seal colony at Piedras Blancas. It was my first time seeing elephant seals in the wild. Not having done any research in advance, I was expecting something like this:
In other words, a small number of elephant seals, not doing much, basically at binocular distance from the viewing area. Obviously we did get some of that, since I have a picture of it. But that was up the coast a bit, at the start of Boucher Trail near the Piedras Blancas lighthouse.
We spent most of our time at the main Piedras Blancas rookery, where just the southeastern half of the viewing area looked – and sounded – like this:
We also saw a lot of this (semi-groady iPhone-through-binocular shot by me):
and even some of this (much nicer photo courtesy of Brian Engh):
I’ll have a lot more to say about this real soon, including more video, but it’s late and I need sleep. Stay tuned!
When I was nine, a copy of Don Glut’s The New Dinosaur Dictionary turned up in my local Waldenbooks. It wasn’t my first dinosaur book, by far – I’d been a dinosaurophile since the age of three. But The New Dinosaur Dictionary was different.
Up to that point, I had subsisted on a heavy diet of kids’ dino books and the occasional article in National Geographic and Ranger Rick. The kids’ books were aimed at kids and the magazine articles were pitched at an engagingly popular level. I didn’t understand every word, but they were clearly written for curious layfolk, not specialists.

A typical spread from The New Dinosaur Dictionary (Glut, 1982). The armored sauropod blew my young mind.
The New Dinosaur Dictionary was something else entirely. It had photos of actual dinosaur bones and illustrations of skeletons with cryptic captions like, “Skeleton of Daspletosaurus torosus. (After Russell)”. Okay, clearly this Russell cove was out there drawing dinosaur skeletons and this book had reproduced some of them. But nobody I knew talked like that, and the books I had access to up to that point held no comparable language.
Then there was stuff like this: “The so-called Von Hughenden sauropod restored as a brachiosaurid by Mark Hallett”. A chain of fascinating and pleasurable ideas detonated in my brain. “The so-called” – say what now? Nobody even knew what to call this thing? Somehow I had inadvertently sailed right to the edge of human knowledge of dinosaurs, and was peering out into taxa incognita. “Restored as a brachiosaurid” – so this was just one of several possible ways that the animal might have looked. Even the scientists weren’t sure. This was a far cry from the bland assurances and blithely patronizing tones of all my previous dinosaur books.
“By Mark Hallett.” I didn’t know who this Hallett guy was, but his art was all over the book, along with William Stout and some guy named Robert T. Bakker and a host of others who were exploding my conception of what paleo art could even be. Anyway, this Mark Hallett was someone to watch, not only because he got mentioned by name a lot, but because his art had a crisp quality that teetered on some hypercanny ridge between photorealism and scribbling. His sketches looked like they might just walk off the page.
In case that line about scribbling sounds dismissive: I have always preferred sketches by my favorite artists to their finished products. The polished works are frequently inhumanly good. They seem to have descended in a state of completed perfection from some divine realm, unattainable by mere mortals. Whereas sketches give us a look under the hood, and show how a good artist can conjure light, shadow, form, weight, and texture from a few pencil strokes. Put it this way: I am anatomist by temperament first, and by training and occupation second. Of course I want to see how things are put together.
Anyway, The New Dinosaur Dictionary was something completely new in my experience. It wasn’t aimed at kids and written as if by kids, like lots of kids’ books. It wasn’t even written by adults talking down (deliberately or inadvertently) to kids, or trying to reach a wide audience that might include kids. It was written by an adult, aiming at other adults. And it was admitting in plain language that we didn’t know everything yet, that there were lots of animals trembling on the outer threshold of scientific knowledge. I didn’t understand half of it – I was down in an ontogenetic trench, looking up as these packets of information exploded like fireworks over my head.
In Seeing In the Dark, the best book about why you should go out stargazing for yourself, Timothy Ferris writes about growing up on Florida’s Space Coast in the early 1960s, and watching the first generation of artificial satellites pass overhead:
I felt like an ancient lungfish contemplating the land from the sea. We could get up there.
That’s precisely the effect that The New Dinosaur Dictionary had on me: I could get up there. Maybe not immediately. But there were steps, bodies of knowledge that could be mastered piecemeal, and most of all, mysteries to be resolved. The book itself was like a sketch, showing how from isolated and broken bones and incomplete skeletons, scientists and artists reconstructed the world of the past, one hypothesis at a time. Now I take it for granted, because I’ve been behind the curtain for a couple of decades. But to my 9-year-old self, it was revolutionary.
This has all come roaring back because of something that came in the mail this week. Or rather, something that had been waiting in the mailroom for a while, that I finally picked up this week: a package from Mark Hallett, enclosing a copy of his 2018 dinosaur calendar. And also this:
An original sketch, which he gave to me as a Christmas present. The published version appears on one of the final pages of our book, where we discuss the boundaries between the known – the emerging synthesis of sauropod biology that we hoped to bring to a broader audience by writing the book in the first place – and the unknown – the enduring mysteries that Mark and I think will drive research in sauropod paleobiology for the next few decades. Presented without a caption or commentary, the sketch embodies sauropods as we see them: emerging from uncertainty and ignorance one hard-won line at a time, with ever-increasing solidity.
Thank you, Mark, sincerely. That sketch, what it evokes, both for me now and for my inner 9-year-old – you couldn’t have chosen a better gift. And I couldn’t be happier. Except perhaps to someday learn that our book exploded in the mind of a curious kid the way that The New Dinosaur Dictionary did for me 34 years ago, a time that now seems as distant and romantic as the primeval forests of the Mesozoic.
Promo pandemonium: Prehistoric Times, Mark Hallett calendar, public talks, and Norwescon 41
November 28, 2017
Here’s a bunch of cool stuff that is either available now or happening soon:
Sauropod Dinosaurs book excerpt in Prehistoric Times
Been on the fence about the sauropod book Mark Hallett and I wrote? Now you can try before you buy – our chapter on titanosaurs is reprinted in the new issue of Prehistoric Times magazine. I know it’s on newsstands because I picked it up at the local Barnes & Noble yesterday. You can also buy the issue from the PT website, physically or in digital form, solo or as part of a subscription. Many thanks to PT editor and publisher Mike Fredericks for the visibility, the staff at Johns Hopkins University Press for permission, and most of all to Mark Hallett for making it happen. We hope you enjoy it.
Get more sauropods in Mark Hallett’s 2018 dinosaur calendar
Mark has a dinosaur calendar out from Pomegranate, and I’m happy to say that sauropods are featured 5 out of 12 months. The calendar has a nice mix of Hallett classics and some newer works, including the cover art from our book, as shown above. Get it direct from Pomegranate or from Amazon.
Vicki’s public talk on forensic anthropology in December
My better half, anthropologist and author Vicki Wedel, is giving a public talk about her work on the evening of Thursday, December 14, at the Western Science Center in Hemet, California. Her title will be, “Bones, ballistics, and blunt force trauma.” I assume the talk will start at 6:00, but check the WSC website for details. The painted skull above is from the natural history museum in Vienna, and it doesn’t have any connection to the talk other than Vicki thought it was rad and I needed a skull to illustrate the post. For more on Vicki and her work, see these posts: cold case, book.
UPDATE: Final details on Vicki’s talk are out. It will start at 6:00, she’ll be signing copies of her book, Broken Bones: Anthropological Analysis of Blunt Force Trauma, and admission is $5.
My public talk on sauropods and whales in January
In January it will be my turn to give a talk at the Western Science Center. I’m on for the evening of Thursday, January 18. Title is not quite finalized but it will probably something along the lines of, “Dinosaurs versus whales: what is the largest animal of all time, and how do we know?” That’s me with the gray whale skeleton at Long Marine Lab in Santa Cruz, back in 2006. I was helping Nick Pyenson measure whales, back when we were both grad students. Ancient blog posts about that here: gray, blue.
See me in Seattle at Norwescon over Easter weekend
If you want to see me star-struck, come to Norwescon, home of the Philip K. Dick Award, next spring, where I’ll be rubbing shoulders with some vastly more famous people. Hugo, Nebula, and World Fantasy Award winner Ken Liu will be the Writer Guest of Honor, legendary SF&F visionary Wayne Douglas Barlowe Hugo- and World Fantasy Award-winning artist Galen Dara will be the Artist Guest of Honor, Green Ronin is the Spotlight Publisher, and, er, I will be the Science Guest of Honor. Yes, I’m alert to both the honor and the incongruity of the thing. When I’m not Freaking. Out. about hanging with two of my favorite creators, I’ll probably be giving talks on dinosaurs and astronomy (my other thing) and participating on some panels and signing books. I’ll try not to disappoint.