New documentary film streaming now: Science Friction
April 21, 2022
Long-time readers may recall that back in 2009, I was quote-mined in the television documentary series Clash of the Dinosaurs (1, 2, 3). Turns out, such misrepresentations are not that uncommon, and now there’s a whole feature-length documentary about the problem, titled Science Friction. The trailer is above, and the film’s homepage is here. It’s streaming on Amazon Prime Video and on Tubi (maaaybe for free? I don’t have a Tubi subscription but the film plays in browser for me with no payment…). Science Friction has earned a decent number of film festival accolades, and I’m proud to have been involved.
Note to my future navel-gazing self: I’m on at 0:19:40 to 0:21:21, and again from 1:22:21 to 1:22:50.
The Wiren Apatosaurus femur is on exhibit in the Moab Museum
October 19, 2021
The last time we saw the sauropod femur that Paige Wiren discovered sticking out of a riverbank, it had been moved into the prep lab at the Moab Museum, with the idea that it would eventually go on exhibit as a touch specimen for the public to enjoy and be inspired by. That has come to pass.
I was in Moab last month with Drs. Jessie Atterholt and Thierra Nalley and we stopped in the Moab Museum to digitize some vertebrae from SUSA 515, an unusual specimen of Camarasaurus that I’ve blogged about before, and will definitely blog about again. While we were there, we got to see and touch the Wiren femur. The museum folks told us that femur has been the first dinosaur bone that a lot of schoolkids and tourists have seen up close, or gotten to touch. As a former dinosaur-obsessed kid who never stopped being excited about touching real dinosaur bones–and as one of the lucky folks that got to rescue this particular fossil from erosion or poaching–that pleases me deeply.
So, obviously, you should go see this thing. And the rest of the museum–as you can see from the photos above, the whole place has been renovated, and there are lots of interesting fossils from central and eastern Utah on display, not to mention loads of historical artifacts, all nicely presented in a clean, open, well-lit space that invites exploration. Go have fun!
Matt Wedel will be yapping about Brachiosaurus. Again.
October 7, 2021
I have the honor of giving the National Fossil Day Virtual Lecture for The Museums of Western Colorado – Dinosaur Journey, next Wednesday, October 13, from 7:00 to 8:00 PM, Mountain Daylight Time. The title of my talk is “Lost Giants of the Jurassic” but it’s mostly going to be about Brachiosaurus. And since I have a whole hour to fill, I’m gonna kitchen-sink this sucker and put in all the good stuff, even more than last time. The talk is virtual (via Zoom) and free, and you can register at this link.
The photo up top is from this July. That’s John Foster (standing) and me (crouching) with the complete right humerus of Brachiosaurus that we got out of the ground in 2019; that story is here. The humerus is in the prep lab at the Utah Field House of Natural History State Park Museum in Vernal, and if you go there, you can peer through the tall glass windows between the museum’s central atrium and the prep lab and see it for yourself.
If you’ve forgotten what a humerus like that looks like in context, here’s the mounted Brachiosaurus skeleton at the North American Museum of Ancient Life with my research student, Kaelen Kay, for scale. Kaelen is 5’8″ (173cm) and as you can see, she can just get her hand on the animal’s elbow. The humerus–in this case, a cast of the right humerus from the Brachiosaurus altithorax holotype–is the next bone up the line. Kaelen came out with us this summer and helped dig up some more of our brachiosaur–more on that story in the near future.
Want more Brachiosaurus? Tune in next week. Here’s that registration link again. I hope to see you there!
I misconstrued the review history of the paper discussed in the last post: my apologies
May 21, 2021
Two days ago, I wrote about what seemed to be an instance of peer review gone very wrong. I’ve now heard from two of the four authors of the paper and from the reviewer in question — both by email, and in comments on the original post — and it’s apparent that I misinterpreted the situation. When the lead author’s tweet mentioned “pushing it through eight rounds of review”, I took this at face value as meaning eight rounds at the same journal with the same reviewers — whereas in fact the reviewer in question reviewed only four drafts. (That still seems like too many to me, but clearly it’s not as ludicrous as the situation as I misread it.) In this light, my assumption that the reviewer was being obstructive was not warranted.
I have decided to retract that article and I offer my apologies to the reviewer, Dave Grossnickle, who approached me very politely off-list to offer the corrections that you can now read in his comment.
On today’s episode of the I Know Dino postcast, Garret interviews Brian and me about our new Brachiosaurus bones and how we got them out of the field. You should listen to the whole thing, but we’re on from 10:10 to 48:15. Here’s the link, go have fun. Many thanks to the I Know Dino crew for their interest, and to Garret for being such a patient and accommodating host. Amazingly, there is a much longer version of the interview available for I Know Dino Patreon supporters, so check that out for more Brachiosaurus yap than you are probably prepared for.
The photo is an overhead shot of me, Casey Cordes, and Yara Haridy smoothing down a plaster wrap around the middle of humerus. The 2x4s aren’t on yet, and the sun is low, so this must have been in the late afternoon on our first day in the quarry in October. Photo by Brian Engh, who perched up on top of the boulder next to the bone to get this shot.
For the context of the Brach-straction, see Part 1 of Jurassic Reimagined on Brian’s paleoart YouTube channel, and stay tuned for more.
Arm lizard
December 16, 2019
Reconstructed right forelimb of Brachiosaurus at Dinosaur Journey in Fruita, Colorado, with me for scale, photo by Yara Haridy. The humerus is a cast of the element from the holotype skeleton, FMNH P25107, the coracoid looks like a sculpt to match the coracoid from the holotype (which is a left), and the other elements are either cast or sculpted from Giraffatitan. But it’s all approximately correct. The actual humerus is 204cm long, but the distal end is eroded and it was probably 10-12cm longer in life. I don’t know how big this cast is, but I know that casts are inherently untrustworthy so I suspect it’s a few cm shorter than it oughta be. For reference, I’m 188cm, but I’m standing a bit forward of the mount so I’m an imperfect scale bar (like all scale bars!). For another view of the same mount from five years ago, see this post.
So I guess the moral is that even thought this reconstructed forelimb looks impressive, the humerus was several inches longer, even before we account for any shrinkage in the molding and casting process, and the gaps between the bones for joint cartilage should probably be much wider, so the actual shoulder height of this individual might have been something like a foot taller than this mount. A mount, by the way, that is about as good as it could practically be, and which I love — I’m including all the caveats and such partly because I’m an arch-pedant, and partly because it’s genuinely useful to know all the ways in which a museum mount might be subtly warping the truth, especially if you’re interested in the biggest of the big.
All of which is a long walk to the conclusion that brachiosaurs are pretty awesome. More on that real soon now. Stay tuned.
Werner Janensch, Wannabe, Lovefool
November 22, 2019
Here’s how I got my start in research. Through a mentorship program, I started volunteering at the Oklahoma Museum of Natural History in the spring of 1992, when I was a junior in high school. I’d been dinosaur-obsessed from the age of three, but I’d never had an anatomy course and didn’t really know what I was doing. Which is natural! I had no way of knowing what I was doing because I lacked training. Fortunately for me, Rich Cifelli took me under his wing and showed me the ropes. I started going out on digs, learned the basics of curatorial work, how to mold and cast fossils, how to screenwash matrix and then pick microfossils out of the concentrate under a dissecting microscope, and—perhaps most importantly—how to make a rough ID of an unidentified bone by going through the comparative element collection until I found the closest match.
All set, right? Ignition, liftoff, straight path from there to here, my destiny unrolling before me like a red carpet.
No.
It could have gone that way, but it didn’t. I had no discipline. I was a high-achieving high school student, but it was all to satisfy my parents. When I got to college, I didn’t have them around to push me anymore, and I’d never learned to push myself. I went off the rails pretty quickly. Never quite managed to lose my scholarships, without which I could not have afforded to be in college, period, but I skimmed just above the threshold of disaster and racked up a slate of mediocre grades in courses from calculus to chemistry. I even managed to earn a C in comparative anatomy, a fact which I am now so good at blocking out that I can go years at a time without consciously recalling it.
After three years of this, I had the most important conversation of my life. Because I was a zoology major I’d been assigned a random Zoology Dept. faculty member as an undergrad advisor. I was given to Trish Schwagmeyer, not because we got on well (we did, but that was beside the point) or had similar scientific interests, just luck of the draw. And it was lucky for me, because in the spring of 1996 Trish looked at my grades from the previous semester, looked me in the eye, and said, “You’re blowing it.” She then spent the next five minutes explaining in honest and excruciating detail just how badly I was wrecking my future prospects. I’ve told this story before, in this post, but it bears repeating, because that short, direct, brutal-but-effective intervention became the fulcrum for my entire intellectual life and future career.
Roughly an hour later I had the second most important conversation of my life, with Rich Cifelli. While I’d been lost in the wilderness my museum volunteering had petered out to zero, and Rich would have been completely justified in telling me to get lost. Not only did he not do that, he welcomed me back into the fold, in a terrifyingly precise recapitulation of the Biblical parable of the prodigal son. When I asked Rich if I could do an independent study with him in the next semester, he thought for a minute and said, “Well, we have these big dinosaur vertebrae from the Antlers Formation that need to be identified.” Which is how, at the age of 21, with a rubble pile of an academic transcript and no real accomplishments to stand on, I got assigned to work on OMNH 53062, the future holotype of Sauroposeidon proteles.
I was fortunate in four important ways beyond the forgiveness, patience, and generosity of Richard Lawrence Cifelli:
- OMNH 53062 was woefully incomplete, just three and a half middle cervical vertebrae, which meant that the project was small enough in concept to be tractable as an independent study for an undergrad. Rich and I both figured that I’d work on the vertebrae for one semester, come up with a family-level identification, and maybe we’d write a two-pager for Oklahoma Geology Notes documenting the first occurrence of Brachiosauridae (or whatever it might turn out to be) in the vertebrate fauna of the Antlers Formation.
- Because the specimen was so incomplete, no-one suspected that it might be a new taxon, otherwise there’s no way such an important project would have been assigned to an undergrad with a spotty-to-nonexistent track record.
- Despite the incompleteness, because the specimen consisted of sauropod vertebrae, it held enough characters to be identifiable–and eventually, diagnosable. Neither of those facts were known to me at the time.
- All of Rich’s graduate students were already busy with their own projects, and nobody else was about to blow months of time and effort on what looked like an unpromising specimen.
There is a risk here, in that I come off looking like some kind of kid genius for grasping the importance of OMNH 53062, and Rich’s other students look like fools for not seeing it themselves. It ain’t like that. The whole point is that nobody grasped the importance of the specimen back then. It would take Rich and me a whole semester of concentrated study just to come to the realization that OMNH 53062 might be distinct enough to be diagnosable as a new taxon, and a further three years of descriptive and comparative work to turn that ‘maybe’ into a paper. People with established research programs can’t afford to shut down everything else and invest six months of study into every incomplete, garbage-looking specimen that comes down the pike, on the off chance that it might be something new. Having the good judgment to not pour your time down a rat-hole is a prerequisite for being a productive researcher. But coming up with a tentative ID of an incomplete, garbage-looking specimen is a pretty good goal for a student project: the student learns some basic comparative anatomy and research skills, the specimen gets identified, no existing projects get derailed, and no-one established wastes their time on what is most likely nothing special. If the specimen does turn out to be important, that’s gravy.
So there’s me at the start of the fall of 1996: with a specimen to identify and juuuust enough museum experience, from my high school mentorship, to not be completely useless. I knew that one identified a fossil by comparing it to known things and looking for characters in common, but I didn’t know anything about sauropods or their vertebrae. Rich got me started with a few things from his academic library, I found a lot more in OU’s geology library, and what I couldn’t find on campus I could usually get through interlibrary loan. I spent a lot of time that fall standing at a photocopier, making copies of the classic sauropod monographs by Osborn, Hatcher, Gilmore, Janensch, and others, assembling the raw material to teach myself sauropod anatomy.
In addition to studying sauropods, I also started going to class, religiously, and my grades rose accordingly. At first I was only keeping up with my courses so that I would be allowed to continue doing research; research was the carrot that compelled me to become a better student. There was nothing immediate or miraculous about my recovery, and Rich would have to give me a few well-deserved figurative ass-kickings over the next few years when I’d occasionally wander off course again. But the point was that I had a course. After a few months I learned—or remembered—to take pride in my coursework. I realized that I had never stopped defining myself in part by my performance, and that when I’d been adrift academically I’d also been depressed. It felt like crawling out of a hole.
(Aside: I realize that for many people, depression is the cause of academic difficulty, not the reverse, and that no amount of “just working harder” can offset the genuine biochemical imbalances that underlie clinical depression. I sympathize, and I wish we lived in a world where everyone could get the evaluation and care that they need without fear, stigma, crushing financial penalties, or all of the above. I’m also not describing any case here other than my own.)
Out of one hole, into another. The biggest problem I faced back then is that if you are unfamiliar with sauropod vertebrae they can be forbiddingly complex. The papers I was struggling through referred to a pandemonium of laminae, an ascending catalog of horrors that ran from horizontal laminae and prespinal laminae through infraprezygapophyseal laminae and spinopostzygapophyseal laminae. Often these features were not labeled in the plates and figures, the authors had just assumed that any idiot would know what a postcentrodiapophyseal lamina was because, duh, it’s right there in the name. But that was the whole problem: I didn’t know how to decode the names. I had no map. SV-POW! tutorials didn’t exist. Jeff Wilson’s excellent and still-eminently-useful 1999 paper codifying the terminology for sauropod vertebral laminae was still years in the future.
Then I found this, on page 35 of Werner Janensch’s 1950 monograph on the vertebrae of what was then called Brachiosaurus brancai (now Giraffatitan):
It was in German, but it was a map! I redrew it by hand in my very first research notebook, and as I was copying down the names of the features the lightbulb switched on over my head. “Diapophyse” meant “diapophysis”, and it was the more dorsal of the two rib attachments. “Präzygapophyse” was “prezygapophysis”, and it was one of the paired articular bits sticking out the front of the neural arch. And, crucially, “Präzygodiapophysealleiste” had to be the prezygodiapophyseal lamina, which connected the two. And so on, for all of the weird bits that make up a sauropod vertebra.
It’s been 22 years and I still remember that moment of discovery, my pencil flying across the page as I made my own English translations of the German anatomical terms, my mind buzzing with the realization that I was now on the other side. Initiated. Empowered. I felt like I had pulled the sword from the stone, found Archimedes’ lever that could move the world. In the following weeks I’d go back through all of my photocopied sauropod monographs with my notebook open to the side, reading the descriptions of the vertebrae for the second or third times but understanding them for the first time, drawing the vertebrae over and over again until I could call up their basic outlines from memory. This process spilled over from the fall of 1996 into the spring of 1997, as Rich and I realized that OMNH 53062 would require more than one semester of investigation.
My memories of those early days of my sauropod research are strongly shaped by the places and circumstances in which I was doing the work. Vicki and I had gotten married in the summer of 1996 and moved into a two-bedroom duplex apartment on the north side of Norman. The upstairs had a long, narrow bathroom with two sinks which opened at either end onto the two upstairs bedrooms, the one in which we slept and the one we used as a home office. In the mornings I could get showered and dressed in no time, and while Vicki was getting ready for work or school I’d go into the office to read sauropod papers and take notes. Vicki has always preferred to have music on while she completes her morning rituals, so I listened to a lot of Top 40 hits floating in from the other upstairs rooms while I puzzled out the fine details of sauropod vertebral anatomy.
Two songs in particular could always be counted on to play in any given hour of pop radio in the early spring of 1997: Wannabe by the Spice Girls, and Lovefool by the Cardigans. I am surely the only human in history to have this particular Pavlovian reaction, but to this day when I hear either song I am transported back to that little bedroom office where I spent many a morning poring over sauropod monographs, with my working space illuminated by the light of the morning sun pouring through the window, and my mind illuminated by Werner Janensch, who had the foresight and good grace to give his readers a map.
If you want to know what I thought about OMNH 53062 back in 1997, you can read my undergraduate thesis—it’s a free download here. Looking back now, the most surprising thing to me about that thesis is how few mentions there are of pneumaticity. I met Brooks Britt in the summer of 1997 and had another epochal conversation, in which he suggested that I CT scan OMNH 53062 to look at the air spaces inside the vertebrae. I filed my undergrad thesis in December of 1997, and the first session CT scanning OMNH 53062 took place in January, 1998. So in late 1997 I was still a pneumaticity n00b, with no idea of the voyage I was about to embark upon.
In 2010, after I was settled in as an anatomist at Western University of Health Sciences, I wrote a long thank-you to Trish Schwagmeyer. It had been 14 years since that pivotal conversation, but when she wrote back to wish me well, she still remembered that I’d gotten a C in comparative anatomy. I’d have a chance to make amends for that glaringly anomalous grade later the same year. At ICVM in Punta del Este, Uruguay, I caught up with Edie Marsh-Matthews, who had taught my comparative anatomy course back when. I apologized for having squandered the opportunity to learn from her, and she graciously (and to my relief) shifted the conversation to actual comparative anatomy, the common thread that connected us in the past and the present.
If the story has a moral, it’s that I owe my career in large part to people who went out of their way to help me when I was floundering. And, perhaps, that the gentle approach is not always the best one. I needed to have my head thumped a few times, verbally, to get my ass in gear, when less confrontational tactics had failed. I slid easily through the classrooms of dozens of professors who watched me get subpar grades and didn’t try to stop me (counterpoint: professors are too overworked to invest in every academic disaster that comes through the door, just like paleontologists can’t study every garbage specimen). If Trish Schwagmeyer and Rich Cifelli had not decided that I was worth salvaging, and if they not had the grit to call me out on my BS, I wouldn’t be here. As an educator myself now, that thought haunts me. I hope that I will be perceptive enough to know when a student is struggling not because of a lack of ability but through a lack of application, wise enough to know when to deploy the “you’re blowing it” speech, and strong enough to follow through.
References
- Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.
- Janensch, Werner. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3: 27-93.
- Wedel, M.J. 1997. A new sauropod from the Early Cretaceous of Oklahoma. Undergraduate honor thesis, Department of Zoology, University of Oklahoma, Norman, OK. 43pp.
- Wilson, J.A. 1999. A nomenclature for vertebral laminae in sauropods and other saurischian dinosaurs. Journal of Vertebrate Paleontology 19: 639-653.
Final bonus image so when I post this to Facebook, it won’t grab the next image in line and crop it horribly to make a preview. This is me with OMNH 1670, in 2003 or 2004, photo by Andrew Lee.
The Snowmass Haplocanthosaurus project is now a museum exhibit
November 16, 2019

A life-size silhouette of the Snowmass Haplocanthosaurus, with Thierra Nalley, me, and Jessie Atterholt for scale. Photo by Jeremiah Scott.
Tiny Titan, a temporary exhibit about the Snowmass Haplocanthosaurus project, opened at the Western Science Center in Hemet, California, last night. How? Why? Read on.
Things have been quieter this year on the Haplo front than they were in 2018, for many reasons. My attention was pulled away by a lot of teaching and other day-job work–we’re launching a new curriculum at the med school, and that’s eaten an immense amount of time–and by some very exciting news from the field that I can’t tell you about quite yet (but watch this space). Things are still moving, and there will be a paper redescribing MWC 8028 and all the weird and cool things we’ve learned about it, but there are a few more timely things ahead of it in the queue.
One of the things going on behind the scenes this year is that Jessie Atterholt, Thierra Nalley, and I have been working with Alton Dooley, the director of the Western Science Center, on this exhibit. Alton has had a gleam in his eye for a long time of using the WSC’s temporary exhibit space to promote the work of local scientists, and we had the honor of being his first example. He also was not fazed by the fact that the project isn’t done–he wants to show the public the process of science in all of its serendipitous and non-linear glory, and not just the polished results that get communicated at the end.
Which is not to say that the exhibit isn’t polished. On the contrary, it looks phenomenal. Thanks to a loan from Julia McHugh at Dinosaur Journey in Colorado, most of the real fossils are on display. We’re only missing the ribs and most of the sacrum, which is too fragmentary and fragile to come out of its jacket. As you can see from the photo up top, there is a life-size vinyl silhouette of the Snowmass Haplo, with 3D prints of the vertebrae in approximate life position. Other 3D prints show the vertebrae before and after the process of sculpting, rescanning, and retrodeformation, as described in our presentation for the 1st Palaeontological Virtual Congress last year (that slideshow is a PeerJ Preprint, here). The exhibit also includes panels on “What is Haplocanthosaurus” and its relationships, on pneumaticity in sauropods, on the process of CT scanning and 3D modeling, and on the unusual anatomical features of the Snowmass specimen. The awesome display shown above, with the possibly-bumpy spinal cord and giant intervertebral discs reconstructed, was all Alton–he did the modeling, printing, and assembly himself.

Haplo vs Bronto. Thierra usually works on the evolution and development of the vertebral column in primates, so I had to show her how awesome vertebrae can be when they’re done right. Photo by Brittney Stoneburg.
My favorite thing in the exhibit is this striking comparison of one the Snowmass Haplo caudals with a proximal caudal from the big Oklahoma apatosaurine. This was Alton’s idea. He asked me if I had any photos of caudal vertebrae from really big sauropods that we could print at life size to compare to MWC 8028, and my mind went immediately to OMNH 1331, which is probably the second-largest-diameter vertebra of anything from all of North America (see the list here). It was also Alton’s idea to fill in the missing bits using one of Marsh’s plates of Brontosaurus excelsus from Como Bluff in Wyoming. It’s a pretty amazing display, and it turns out to have been a vehicle for discovery, too–I didn’t realize until I saw the verts side-by-side that the neural canal of the Snowmass Haplo caudal is almost as big as the neural canal from the giant apatosaurine caudal. It’s not a perfect comparison, because the OMNH fossil doesn’t preserve the neural canal, and the Como specimen isn’t that big, but proportionally, the Snowmass Haplo seems to have big honkin’ neural canals, not just at the midpoint (which we already knew), but all the way through. Looks like I have some measuring and comparing to do.
(Oh, about the title: we don’t know if the Snowmass Haplo was fully grown or not, but not all haplocanthosaurs were small. The mounted H. delfsi in Cleveland is huge, getting into Apatosaurus and Diplodocus territory. Everything we can assess in the Snowmass Haplo is fused, for what that’s worth. We have some rib chunks and Jessie will be doing histo on them to see if we can get ontogenetic information. I’ll keep you posted.)

Brian’s new Haplocanthosaurus restoration, along with some stinkin’ mammals. Photo by Jessie Atterholt.
Brian Engh contributed a fantastic life restoration of Haplocanthosaurus pro bono, thanks to this conversation, which took place in John Foster’s and ReBecca Hunt-Foster’s dining room about a month ago:
Brian: What are you drawing?
Me: Haplocanthosaurus.
Brian: Is that for the exhibit?
Me: Yup.
Brian (intense): Dude, I will draw you a Haplocanthosaurus.
Me: I know, but you’re a pro, and pros get paid, and we didn’t include a budget for paleoart.
Brian (fired up): I’m offended that you didn’t just ask me to draw you a Haplocanthosaurus.
Then he went to the Fosters’ couch, sat down with his sketchbook, and drew a Haplocanthosaurus. Not only is it a stunning piece on display in the exhibit, there are black-and-white printouts for kids to take and color (or for adults to take to their favorite tattoo artists, just sayin’). [Obligatory: this is not how things are supposed to work. We should all support original paleoart by supporting the artists who create it. But Brian just makes so damn many monsters that occasionally he has to kick one out for the heck of it. Also, I support him on Patreon, and you can, too, so at a stretch you could consider this the mother of all backer rewards.]
One special perk from the opening last night: Jessica Bramson was able to attend. Who’s that, you ask? Jessica’s son, Mike Gordon, found the first piece of bone from the Snowmass Haplo on their property in Colorado over a decade ago. Jessica and her family spent two years uncovering the fossils and trying to get paleontologists interested. In time she got in touch with John Foster, and the rest is history. Jessica lives in California now, and thanks to John’s efforts we were able to invite her to the exhibit opening to see her dinosaur meet the world. Stupidly, I did not get any photos with her, but I did thank her profusely.

A restored, retrodeformed caudal of the Snowmass Haplocanthosaurus, 3D-printed at life size for the exhibit. Photo swiped from the WSC Facebook page.
I owe a huge thanks to Alton Dooley for taking an interest in our work, and to the whole WSC crew for their hard work creating and promoting the exhibit. You all rock.
The exhibit will run through the end of March, 2020, at least. I deliberately did not show most of it, partly because I was too busy having fun last night to be diligent about taking photos, but mostly because I want you to go see it for yourself (I will do a retrospective post with more info after the exhibit comes down, for people who weren’t able to see it in person). If you make it out to Hemet, I hope you have half as much fun going through the exhibit as we did making it.