I am still building up to a big post on vertebral orientation, but in the meantime, check out this caudal vertebra of a Komodo dragon, Varanus komodoensis. This is right lateral view–the vert is strongly procoelous, and the articular ends of the centrum are really tilted relative to the long axis. I find this encouraging, for two reasons. First, it helped me clarify my thinking on how we ought to orient vertebrae, which Mike wrote about here and here. And second, it gives me some hope, because if we can figure out why tilting your articular surfaces makes functional sense in extant critters like monitors, maybe we can apply those lessons to sauropods and other extinct animals.

This is LACM Herpetology specimen 121971. Many thanks again to Neftali Camacho for access and assistance, and to Jessie Atterholt for basically doing all the other jobs while I was faffing about with this Komodo dragon.


Juvenile Tomistoma schlegelii, LACM Herpetology 166483, with me for scale. It wasn’t until I picked up the skull that I realized it was the same specimen I had looked at back when. I was looking at its neck in 2011, and its tail today, for reasons that will be revealed at the dramatically appropriate moment. I was only playing with the skull because it’s cute, an intricate little marvel of natural selection. Photos by Vanessa Graff (2011) and Jessie Atterholt (2018). Many thanks to collections manager Neftali Camacho for his hospitality and assistance both times!

John Yasmer, DO (right) and me getting ready to scan MWC 8239, a caudal vertebra of Diplodocus on loan from Dinosaur Journey, at Hemet Valley Imaging yesterday.

Alignment lasers – it’s always fun watching them flow over the bone as a specimen slides through the tube (for alignment purposes, obviously, not scanning – nobody’s in the room for that).

Lateral scout. I wonder, who will be the first to correctly identify the genus and species of the two stinkin’ mammals trailing the Diplo caudal?

A model we generated at the imaging center. This is just a cell phone photo of a single window on a big monitor. The actual model is much better, but I am in a brief temporal lacuna where I can’t screenshot it.

What am I doing with this thing? All will be revealed soon.

Preserved bits of the Snowmass Haplocanthosaurus, MWC 8028, with me for scale. Modified from Wedel (2009: fig. 10), but not much – MWC 8028 was about the same size as CM 879.

Let’s say you had a critter with weird neural canals and super-deeply-dished-in centrum-ends, and you wanted to digitally rearticulate the vertebrae and reconstruct the spinal cord and intervertebral cartilages, in a project that would bring together a bunch of arcane stuff that you’d been noodling about for years. Your process might include an imposing number of steps, and help from a LOT of people along the way:

1. Drive to Dinosaur Journey in Fruita, Colorado, to pick up the fossils and bring them back to SoCal. (Thank you Paige Wiren, John Foster, and Rebecca Hunt-Foster for an excuse to come to the Moab area, thank you Brian Engh for the awesome road trip, and thank you Julia McHugh for access to specimens and help packing them up!).

2. Take the fossils to the Hemet Valley Medical Center for CT scanning. (Thank you John Yasmer and team.)

3. Find a colleague who would help you generate 3D models from the CT scans. (Thank you Thierra Nalley.)

4. Talk it over with your university’s 3D vizualization team, who suggest a cunning plan: (Thank you Gary Wisser, Jeff Macalino, and Sunami Chun at WesternU.)

5. They print the best-preserved vertebra at 75% scale. (50% scale resin print shown here.)

6. You and a collaborator physically sculpt in the missing bits with some Super Sculpey. (Thank you Jessie Atterholt for sculpting, and thank you Jeremiah Scott for documenting the process.)

(7.) The 3D-viz team use their fancy optical scanner (basically a photogrammetry machine) to make:

  • a second-generation digital model (digital)
  • from the sculpted-over 3D print (physical)
  • of the first-generation digital model (digital)
  • made from the CT scans (digital)
  • of the original fossil material (physical).

(8.) With some copying, pasting, and retro-deforming, use that model of the restored vert as a template for restoring the rest of the vertebrae, stretching, mirroring, and otherwise hole-filling as needed. (Prelim 2D hand-drawn version of caudal 1 shown here.)

(9.) Test-articulate the restored vertebrae to see if and how they fit, and revise the models as necessary. (Low-fi speculative 2D version from January shown here.)

(10.) Once the model vertebrae are digitally rearticulated, model the negative spaces between the centra and inside the neural canals to reconstruct the intervertebral cartilages and spinal cord.

(11.) Push the university’s 3D printers to the limit attempting to fabricate an articulated vertebral series complete with cartilages and cord in different colors and possibly different materials, thereby making a third-generation physical object that embodies the original idea you had back in January.

(12.) Report your findings, publish the CT scans and 3D models (original and restored), let the world replicate or repudiate your results. And maaaybe: be mildly astonished if people care about the weird butt of the most-roadkilled specimen of the small obscure sauropod that has somehow become your regular dance partner.

We did number 6 yesterday, so just counting the arbitrarily-numbered steps (and ignoring the fact that 7-12 get progressively more complicated and time-consuming), we’re halfway done. Yay! I’ll keep you posted on how it goes from here.

It’s been a bit since my last update. That’s how things go on the road. We got in some time for exploration and a little prospecting.

We also had to close the quarry. Anne Weil, whose dig London and I were out there to assist on, brought a speaker on the last day and played us out with a hydration song while we shut everything down for another year. We found some great stuff, and I’m anxious for you to get to see it, but there’s work to do first. Rest assured, I’ll keep you posted when the time comes.

The extant wildlife continued to be a source of enjoyment and inspiration, especially this cottontail. Rabbits, baby!

Time goes on, and so does the road. My road leads back home, and then back out again. I’ll check in when I can. Hope your summer is half as fun.

Afield in Oklahoma

June 25, 2018

Clouds over Black Mesa.

Baby spadefoot toad, with my index finger for scale.

Someone was here before us. Even though Black Mesa is best known for its Morrison exposures and giant Jurassic dinosaurs, there are Triassic rocks here, too, which have produced both body fossils and tracks, including these.

Seen but not photographed today:

  • a group of pronghorn by the side of the road, with two babies;
  • a deer that ran across the road right in front of our vehicle;
  • a wild turkey foraging in the ditch next to the road;
  • a few jackrabbits, and more cottontails than you can shake a stick at;
  • loads of prairie dogs.

Now if you’ll excuse me, I have to go watch a thunderstorm.

Remember this broken Giraffatitan dorsal vertebra, which Janensch figured in 1950?

It is not only cracked in half, anteroposteriorly, it’s also unfused.

Here’s a better view of the broken face, more clearly showing that the neural canal is (a) much taller than wide – unlike all vertebrate spinal cords – and (b) almost entirely situated ventral to the neurocentral joint, getting close to the condition in the perverted Camarasaurus figured by Marsh.

Here’s a dorsal view, anterior to the top, with Mike’s distal forelimbs for scale.

Left lateral view.

Right lateral view – note the subtle asymmetries in the pneumatic foramen/camera. A little of that might be taphonomic distortion but I think much of it is real (and expected, most pneumatic systems produce asymmetries).

And postero-dorsal view, really showing the weird neural canal to good advantage. In this photo and in the pure dorsal view, you can see that the two platforms for the “neural arch” – which, as in the aforementioned Camarasaurus, is neither neural nor an arch – converge so closely as to leave only a paper-thin gap.

A few points arise. As explained in this post, it makes more sense to talk about the neurocentral joint migrating up or down relative to the neural canal, which is right where it always is, just dorsal to the articular faces of the centrum.

So far, in verts I’ve seen with “offset” neurocentral joints, the joint tends to migrate dorsally in dorsal vertebrae, putting the canal inside the developmental domain of the centrum (which now includes a partial or total arch in an architectural sense, even though the chunk of bone we normally call the neural arch develops as a separate bit) – as shown in the first post in this series. In sacral and caudal vertebrae, the situation is usually reversed, with the joint shifted down into what would normally be the centrum, and the canal then mostly or completely surrounded by the arch – as shown in the second post in the series. This post then doesn’t really add any new concepts, just a new example.

Crucially, we can only study this in the vertebrae of juveniles and subadults, because once the neurocentral joints are fused and remodeled, we usually can’t tell where the old joint surface was. So it’s like cervicodorsal and caudal dorsal pneumatic hiatuses, in that the feature of interest only exists for part of the ontogeny of the animal, and our sample size is therefore inherently limited. Not necessarily limited by material – most museums I’ve visited have a fair amount of juvenile and subadult material in the collections – but limited in published visibility, in that for many sauropods only the largest and most complete specimens have been monographically described.

So once again, the answer is simply to visit collections, look at lots of fossils, and stay alert for weird stuff – happily, a route that is open to everyone with a legitimate research interest.


  • Janensch, W. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3:27-93.