aquilops-display-omnh-dec-2016-1

I’m back in Oklahoma for the holidays, and anytime I’m near Norman I pop in to the OMNH to see old friends, both living and fossil. Here’s the Aquilops display in the hall of ancient life, which has been up for a while now. I got some pictures of it when I was here back in March, just never got around to posting them.

aquilops-close-up-omnh-dec-2016-2

Aquilops close up. You can’t see it well in this pic, but on the upper right is a cast of the Aquilops cranium with a prosthesis that shows what the missing bits would have looked like. That prosthesis was sculpted by – who else? – Kyle Davies, the OMNH head preparator and general sculpting/molding/casting sorceror. You’ve seen his work on the baby apatosaur in this post. I have casts of everything shown here – original fossil, fossil-plus-prosthesis, and reconstructed 3D skull – and I should post on them. Something to do in the new year.

ceratopsians-large-and-small-omnh-dec-2016-3

The Aquilops display is set just opposite the Antlers Formation exhibit, which has a family of Tenontosaurus being menaced by two Deinonychus, and at the transition between Early and Late Cretaceous. The one mount in the Late Cretaceous area is the big Pentaceratops, which is one of the best things in this or any museum.

pentaceratops-omnh-dec-2016-4

Evidence in support of that assertion. Standing directly in front of this monster is a breathtaking experience, which I highly recommend to everyone.

It’s just perfect that you can see the smallest and earliest (at least for now) North American ceratopsian adjacent to one of the largest and latest. Evolution, baby!

mammoth-santa-omnh-dec-2016-5

I didn’t only look at dinosaurs – the life-size bronze mammoth in the south rotunda is always worth a visit, especially in holiday regalia.

santaposeidon-omnh-dec-2016-6

No holiday post about the OMNH would be complete without a shot of “Santaposeidon” (previously seen here). I will never get tired of this!

The chances that I’ll get anything else posted in 2016 hover near zero, so I hope you all have a safe and happy holiday season and a wonderful New Year.

Today, we were at the BYU Museum of Paleontology, which is in a ridiculously scenic setting with snow-capped mountains on the horizon in almost every direction.

IMG_2054

We got through a lot of good work in collections, and we’ll show you some photos from there in due course. But for today, here are a couple of pictures from the public galleries.

First, here in a single photo is definitive proof that the “Toroceratops hypothesis” is wrong:

DSCN0815

Say what you want about ontegenetic trajectories, that huge and well ossified Triceratops is not a juvenile of anything.

Good, glad we go that sorted out.

Meanwhile, at the even better end of the gallery, here is a very nice — and very well lit — cast of the famous articulated juvenile Camarasaurus specimen CM 11338 described by Gilmore (1925):

DSCN0842

Further bulletins as events warrant.

References

Gilmore, Charles W. 1925. A nearly complete articulated skeleton of
Camarasaurus, a saurischian dinosaur from the Dinosaur National
Monument, Utah. Memoirs of the Carnegie Museum 10:347-384.

 

Thomas 2015 figure 2

Left lateral skull schematic (above) and left skull photograph (below) of OMNH 58340. The skull is angled at the ‘alert position’ indicated by the horizontal semicircular canal. Natural fenestrae are shaded gray. Dashed outline denotes conjectural sclerotic ring. Anterior is to the left. Abbreviation: mf – maxillary foramen. Thomas (2015: fig. 2).

As stinkin’ ornithischians go, Tenontosaurus is near and dear to my heart. For some reason beyond the ken of mortals, the Antlers Formation of southeast Oklahoma has yielded only a small handful of Acrocanthosaurus (Stovall and Langston 1950; Currie and Carpenter 2000), one partial Deinonychus skeleton and a few dozen shed teeth (Brinkman et al. 1998), the single, lonely, woefully incomplete holotype specimen of Sauroposeidon (Wedel et al. 2000a, b) – and roughly five flarkjillion skeletons of Tenontosaurus. I know a lot of those skeletons intimately: between 1994 and 2001, I went on about two dozen OMNH digs to pull them out of the ground, and I worked on a couple as a volunteer preparator.

Thomas 2015 figure 18

Anterior skull schematic (above) and photograph (below) of OMNH 58340. The two images are set to the same scale, demonstrating the amount of displacement in the right side of the skull. The schematic was reconstructed by digitally mirroring the left side of the rostrum and suspensorium in order to approximate the actual appearance of the skull. Natural fenestrae are shaded gray. Anterior is out of the page. Thomas (2015: fig. 18).

I was off to Berkeley in 2001, so I missed the fun when another crew got the best-ever Tonto specimen, OMNH 58340. Except for the back half of the tail, which had eroded away, almost every bit of the skeleton was preserved in perfect articulation, even the hyoid apparatus, terminal phalanges, proatlas, and atlas cervical ribs. The skull was a bit disarticulated – half of the rostrum had floated out of position, and the stapes and palpebrals were missing – but it’s still the nicest Tonto skull ever found, and one of the best-preserved fossils to ever come out of the Antlers Formation.

Now that skull has been very thoroughly described by Andrew Thomas. Andrew wrote it up for his MS thesis under my first mentor, Rich Cifelli, and it was published last month in Palaeontologica Electronica (Thomas 2015). I had dinner with Andrew and his family when I visited the OMNH in the spring of 2014, and he showed me a down-scaled translucent 3D print of the left half of OMNH 58340. I learned more about ornithischian skulls playing with that thing over dinner than I had in the previous two decades of (admittedly quarter-assed) study.

Thomas 2015 figure 10

Medial view of the left side of the virtual skull of OMNH 58340 with the vomer present (10.1), allowing a view of the articulation of the vomer with the pterygoid, and with the palatine and vomer removed (10.2), allowing a view of the joints between the maxilla, lacrimal, prefrontal, jugal, ectopterygoid, and pterygoid. The vertically striated texture present on the visible surfaces of many elements, notably the lacrimal, maxilla, and premaxilla, is an artifact of the process used to isolate CT images of each element from the remainder of the data set. Abbreviations: f – flange; pp – posterior processes; tp – triangular processes. Thomas (2015: fig. 10).

So there’s me, playing with a down-scaled 3D print of a Tonto skull. Why am I telling you about this? Because if you want to print your own, you can – digital models of the complete cranium, and all of the individual elements, are available as STL files published along with the paper. Getting to the models takes some doing – they’re in a ZIP file linked from the paper’s Appendix 4, which you can access directly here.

Thomas (2015) has a lot more than just cool 3D models – there’s a lot of descriptive goodness, including the cranial endocast, cranial nerves, inner ear labyrinth, and hyoids; a whopping 62 figures, most in full color; and a phylogenetic analysis that incorporates the new morphological data on Tenontosaurus. No revelations there – despite all the nice specimens, Tonto remains an enigma from the murky realm between basal ornithopods and Iguanodontia. But if Oklahoma’s most abundant dinosaur is a bit of a phylogenetic mystery, it’s also becoming a paleobiologic gold mine, thanks in large part to the bone histology studies of Sarah Werning and colleagues (Lee and Werning 2008; Werning 2012 – also see Horner et al. 2009 on histology of Tenontosaurus from the Cloverly Formation of Montana). With the publication of this paper, Andrew Thomas is now part of the “Tenontaissance”. Congratulations, Andrew, and well done!

Now if we could just get some more Sauroposeidon

References

IMG_5250

Now that, faithful readers, is a monument to evolution and its endless forms most beautiful. I’m talking about the wall of ceratopsian skulls at NHMU, of course, not the back of Brian Engh’s head (bottom center).

IMG_5256

If you don’t know them all on sight (yet!), here’s a cheat sheet. I goofed on a couple myself: before I looked at the sheet I figured Coahuilaceratops as Pentaceratops and mistook Kosmoceratops for Vagaceratops. Still, 12 out of 14 isn’t bad for a minor-league ceratopsian scholar such as yours truly.

IMG_5270

Here’s the chasmosaurine-centric view from lower right.

IMG_5282

And the centrosaurine-centric view from distant left.

The world needs more things like this. Good on ya, NHMU.

For other NHMU posts, see:

Natural History Museum of Utah: Barosaurus

IMG_5272

Brian Engh (bottom left, enthusing about the Ceratosaurus just off-screen) and I are recently returned to civilization after a stint of fieldwork in Utah. On the way home, we made a detour to Salt Lake to visit the new Natural History Museum of Utah.

IMG_5257

The NHMU is one of the nicest museums I’ve ever had the pleasure of roaming through. They have a ton of stuff on display, including lots of real fossils and quite a few touchable specimens, with an understandably heavy emphasis on Utah’s extensive paleontological record.

IMG_5261

The museum is also beautifully laid out – you can walk around almost all of the mounts and see most of them from multiple levels of elevation. The signage hits a new high for being both discreet and informative. Almost everything on display is clearly identified either as a cast or by specimen number (or maybe both), and the real specimens typically list both the discoverer and the preparator. I’ve never seen that before, and I like it a lot.

IMG_5290

I suppose I should say a few words about the Barosaurus mount. It’s pretty cool – you can get very close to it, walk all the way around the body, and – crucially for a true sauropod lover – count vertebrae. They gave it 16 cervicals and 9 dorsals, just as hypothesized by McIntosh (2005), and unlike the AMNH Barosaurus, which has the neck cheated out by one extra cervical.

On the left in the photo above is the famous wall of ceratopsian skulls. More about that next time.

Reference

McIntosh, J.S. 2005. The genus Barosaurus Marsh (Sauropoda, Diplodocidae); pp. 38-77 in Virginia Tidwell and Ken Carpenter (eds.), Thunder Lizards: the Sauropodomorph Dinosaurs. Indiana University Press, Bloomington, Indiana, 495 pp.

Aquilops tattoo

My 40th birthday present from Vicki. I commissioned the art from Brian Engh. I bow to no one in my love for his original Aquilops head reconstruction:

Life restoration of Aquilops by Brian Engh. Farke et al. (2014: fig. 6C). CC-BY.

Life restoration of Aquilops by Brian Engh. Farke et al. (2014: fig. 6C). CC-BY.

BUT it’s waaay too detailed for a tattoo unless I wanted a full back piece. I sent Brian this sketch to convey what I wanted – to emphasize the strong lines of the piece, punch up the spines and spikes, basically shift it toward a comic book style without devolving into caricature:

Aquilops tattoo - Matt sketch raw

Originally I was going to have Aquilops‘ name and year of discovery in the tat. I decided to drop the lettering, for several reasons. One, it won’t hold up as well over the next few decades. Two, if someone is close enough to read it, we’ll probably be talking about the tattoo already. Third, the tattoo is a better conversation starter without a caption. First I get to tell people what Aquilops is, then I get to explain what ‘fourth author‘ means. ;-)

As he did for the original Aquilops head recon, Brian sent a selection of possible color schemes, mostly based on those of extant lizards. I couldn’t decide which I liked best, so I talked it over with my tattoo artist, Tanin McCoe at Birch Avenue Tattoo in Flagstaff, Arizona. I wasn’t just interested in what looks good on paper, but what would work well with my skin tone and still look good 20 years from now. Tanin really liked the earth-tone color scheme with the dark stripe across the eye, so that’s how we went. The tattoo Aquilops is facing left instead of right because it’s on my left shoulder – my right deltoid was already occupied.

They do good work at Birch Avenue – Vicki’s gotten three pieces there, including this skeleton key that was also done by Tanin:

Vicki skeleton key tattoo - 1200

Yes, the key’s bit is a human sphenoid – that was my idea.

Anyway, I’m super-happy with the tattoo, and I’m glad it’s healed enough to show off. Thanks, Brian and Tanin!

The longest cell in Andy Farke is one of the primary afferent (sensory) neurons responsible for sensing vibration or fine touch, which runs from the tip of his big toe to his brainstem. (NB: I have not actually dissected Andy to confirm this, or performed any viral neuron tracing on him, this is assumed based on comparative anatomy.) Here’s a diagram:
Longest cell in Andy Farke

This is what happens when (a) I need to create a diagram to illustrate the longest cell in the human body for my students, and (b) my friends put stuff online with a CC-BY license.

Found this while I was checking out Aquilops art online:

Aquilops_scale

It’s a derivative work by Andy IJReid, from this Wikimedia page, based on two PhyloPic silhouettes Andy created (go here for the pathetically tiny lower vertebrate and here for Aquilops).

wedel-rln-fig2

From there it was pretty straighforward to mash up Andy’s silhouette with the nerve stuff from Wedel (2012: fig. 2).

So if you want the full deets on licensing – which I am obligated to provide whether you want them or not – the image up top is a derivative image by me, based on work by Andy published at PhlyoPic under the Creative Commons Attribution 3.0 unported (CC-BY 3.0) license, and based on my own image published in Acta, also under a CC-BY license.

If you’d like to know more about the science behind very long nerves in vertebrates, please see these posts:

Also, keep making stuff and putting it online under a license people can actually use. It’s beneficial for science and education, and hugely entertaining for me.

Reference

Wedel, M.J. 2012. A monument of inefficiency: the presumed course of the recurrent laryngeal nerve in sauropod dinosaurs. Acta Palaeontologica Polonica 57(2):251-256.