New information on the integumentary ornamentation of Aquilops americanus (that I have on my shoulder)
June 14, 2015
My 40th birthday present from Vicki. I commissioned the art from Brian Engh. I bow to no one in my love for his original Aquilops head reconstruction:
BUT it’s waaay too detailed for a tattoo unless I wanted a full back piece. I sent Brian this sketch to convey what I wanted – to emphasize the strong lines of the piece, punch up the spines and spikes, basically shift it toward a comic book style without devolving into caricature:
Originally I was going to have Aquilops‘ name and year of discovery in the tat. I decided to drop the lettering, for several reasons. One, it won’t hold up as well over the next few decades. Two, if someone is close enough to read it, we’ll probably be talking about the tattoo already. Third, the tattoo is a better conversation starter without a caption. First I get to tell people what Aquilops is, then I get to explain what ‘fourth author‘ means. ;-)
As he did for the original Aquilops head recon, Brian sent a selection of possible color schemes, mostly based on those of extant lizards. I couldn’t decide which I liked best, so I talked it over with my tattoo artist, Tanin McCoe at Birch Avenue Tattoo in Flagstaff, Arizona. I wasn’t just interested in what looks good on paper, but what would work well with my skin tone and still look good 20 years from now. Tanin really liked the earth-tone color scheme with the dark stripe across the eye, so that’s how we went. The tattoo Aquilops is facing left instead of right because it’s on my left shoulder – my right deltoid was already occupied.
They do good work at Birch Avenue – Vicki’s gotten three pieces there, including this skeleton key that was also done by Tanin:
Yes, the key’s bit is a human sphenoid – that was my idea.
Anyway, I’m super-happy with the tattoo, and I’m glad it’s healed enough to show off. Thanks, Brian and Tanin!
The longest cell in Andy Farke
June 12, 2015
The longest cell in Andy Farke is one of the primary afferent (sensory) neurons responsible for sensing vibration or fine touch, which runs from the tip of his big toe to his brainstem. (NB: I have not actually dissected Andy to confirm this, or performed any viral neuron tracing on him, this is assumed based on comparative anatomy.) Here’s a diagram:
This is what happens when (a) I need to create a diagram to illustrate the longest cell in the human body for my students, and (b) my friends put stuff online with a CC-BY license.
Found this while I was checking out Aquilops art online:
It’s a derivative work by Andy IJReid, from this Wikimedia page, based on two PhyloPic silhouettes Andy created (go here for the pathetically tiny lower vertebrate and here for Aquilops).
From there it was pretty straighforward to mash up Andy’s silhouette with the nerve stuff from Wedel (2012: fig. 2).
So if you want the full deets on licensing – which I am obligated to provide whether you want them or not – the image up top is a derivative image by me, based on work by Andy published at PhlyoPic under the Creative Commons Attribution 3.0 unported (CC-BY 3.0) license, and based on my own image published in Acta, also under a CC-BY license.
If you’d like to know more about the science behind very long nerves in vertebrates, please see these posts:
- The world’s longest cells? Speculations on the nervous systems of sauropods
- Oblivious sauropods being eaten
Also, keep making stuff and putting it online under a license people can actually use. It’s beneficial for science and education, and hugely entertaining for me.
Reference
How conveniently can you package your results?
April 13, 2015
A couple of weeks ago, Mike sent me a link to this interview with ecologist James O’Hanlon, who made this poster (borrowed from this post on O’Hanlon’s blog):
We had a short email exchange which quickly converged on, “This would work well for some projects, but not for others.” That’s the same conclusion I came to in my recent review of my own paper titles: I am increasingly enamored of titles that are full sentences, because then if all someone reads is your title, they still know what you found. But not every paper can be summarized so neatly.
Beginning a tight little internet eddy that will be complete at the end of this post, Andy Farke posted my paper title review post on Facebook and it fired some discussion in the comments. Victoria Arbour wrote, “I’m trying to move more towards ‘sentence’ titles, but it’s difficult to come up with something that’s concise, accurate and nuanced sometimes!” I responded, “Totally agreed. There’s no one size fits all solution. I have no idea how John Foster and I could have turned the Snowmass Haplocanthosaurus title into a sentence that wouldn’t have been a disaster. ‘Concise, accurate, and nuanced’ are all good goals, but they pull in different directions.”
But it got me thinking about the different ways that we can craft our results for effective delivery. The default package is long-form: the paper. Not just long, but narrowly targeted: just about every sub-sub-subfield has a core of diehards who will read your paper because it’s right in their wheelhouse and they basically have to, to stay caught up. You were going to reach them anyway. The real question – the question that, iterated over all of your papers, will decide the shape of your career – is who else are you going to reach? The answer is going to depend a lot on serendipity, but you can improve your chances by building something easily digestible – scattering the seeds of your results over as many brains as possible, to increase the number of successful germinations (which in this metaphor could be anything from citations to one-off collaborations to life-long friendships). Here’s what I have so far.
Four ways to efficiently package your results
I almost wrote, “four ways to weaponize and aerosolize your science”. You’re trying to infect people with your ideas. Here are some potential delivery mechanisms.
First, and already mentioned: a good title. Not “Aspects of the history, anatomy, taxonomy and palaeobiology of good heavens I have lost feeling in my extremities” but, whenever possible, something that either tells people what you found (the sentence title) or at least indicates that you found something interesting (the question title, some ‘hook’ titles – “Why giraffes have short necks”). See these three posts for more.

Congratulations, now you’ve read Wedel and Taylor 2013a (to a first approximation). What are you going to do with all the time we just saved you?
Second, a summary figure. Discussed here. Nice because once people have seen that figure, they basically have your results in one convenient, portable, easily-digestible package. Downside: figures are usually entombed in papers, so this doesn’t count as an outreach maneuver unless you let the figure out into the wild some other way. Blog it, put it on Facebook, do something with it so that it functions as a funnel, catching people and pointing them toward your work.
Third, a punchy poster, like O’Hanlon’s. This has a similar caveat as the summary figure: if the only place people can see it is in its native environment (the paper, the scientific meeting), it’s still only preaching to the converted. Get it out where other people can see it. Second caveat: if the poster doesn’t point to something outside of itself, it doesn’t really count as outreach material. The best part of O’Hanlon’s poster is the QR code. If anyone is unhappy with how brief the poster is, they can follow the link and go down the rabbit hole. The depth of the engagement is in the user’s hands. Corollary: if your poster doesn’t have a QR code or a (tiny)URL, it’s a dead end. Why not make it into a gateway? It’s not a question of either/or, it’s an opportunity for yes/and.
Fourth, an infographic, like this one Victoria Arbour made to summarize some of the results from her big 2013 paper on Alberta ankylosaurs (borrowed from here). I thought it was ingenious when I first saw it (on Facebook), and I still do. You know why? Because I know jack about ankylosaurs, but this thing makes them seem both cool and tractable. Victoria is conveying, “There is structure here, and it makes sense. Let me guide you through it.” I instantly wanted something like this for every group of dinosaurs. You know who will appreciate you building something like this? Every other person besides the half-dozen grognards who work on the exact same thing you do (and maybe them, too). Gratitude leads to citations – people will go out of their way to cite your work just because they want other people to know about it.
Conclusions: give people a destination, give them choices, give them something
Three final points about all of this. First, none of these things work if there’s nowhere for interested parties to go, or nothing for them to find when they get there. If there’s a paper already, it had better justify the interest that made people look at it. Don’t let your catchy title be like the trailer for that movie that was 2 minutes of awesome and 1:58 of zzzzzzz. If there’s no paper yet, what are you pointing people to – a blog, a research website, a PeerJ preprint, some files on FigShare, a YouTube video, your open notebook, what? Give them somewhere to go. Immediate implication: if there’s nowhere else for interested people to go, why are you presenting now? Again: don’t build dead-ends, build gateways.
Next, if you think that crafting a second, tighter package strictly for the purposes of promotion is a bit gauche, here’s another perspective: you’re giving people more choices about how to engage with your work. A paper alone presents a very limited set of options. Read me (or skim me, or look at my figures), or don’t. Some people don’t have the activation energy that requires, and by ‘some people’ I mean everyone outside of your little niche. Most of them will never know that your work even exists. Craft something that will reach those people and give them an easy way in. Even for those closer to home, it may still make their lives easier. Have I actually read Arbour and Currie (2013)? No, but I looked at the pretty figures, because I saw the infographic on Facebook. So when I do need to know something about ankylosaurs (hey, stranger things have happened), I know where to turn – and who to cite. I, the user, have options. Give your users more options, and you may find that you get more users.
Third, it pays to stop and think about how people who aren’t in your narrow sub-sub-subfield are going to find out about your work. Do you have a blog? A Facebook account? Active on a mailing list or a forum? As long as that figure or poster or infographic sits in its native habitat, it’s only reaching the converted. Put it on your blog or on Facebook, now it’s something else, carrying your ideas out into the world: a missive, a missile, a missionary – all from the Latin mittere, ‘to send’. You’re already doing the work. Package it, neatly and tightly, and send it.
– – – – – – –
Many thanks to Victoria Arbour for permission to post her diagram, and for her patience over the 23 months that it has taken me to get around to doing so. You really should go check out Arbour and Currie (2013) – the figures are stunning – and Victoria’s extensive and entertaining series of blog posts that followed. That rabbit hole starts here.
References
- Arbour VM, Currie PJ (2013) Euoplocephalus tutus and the Diversity of Ankylosaurid Dinosaurs in the Late Cretaceous of Alberta, Canada, and Montana, USA. PLoS ONE 8(5): e62421. doi:10.1371/journal.pone.0062421
- Wedel, M.J., and Taylor, M.P. 2013. Neural spine bifurcation in sauropod dinosaurs of the Morrison Formation: ontogenetic and phylogenetic implications. Palarch’s Journal of Vertebrate Palaeontology 10(1): 1-34. ISSN 1567-2158.
Just launched: a new open-access journal of vertebrate paleontology, brought to you by the University of Alberta, Canada! It’s called VAMP (Vertebrate Anatomy Morphology Palaeontology), and it charges no APC. Here’s a illustration from one of the two articles in its first issue.
VAMP uses the canonical open-access licence, Creative Commons Attribution 4.0 International (CC By), which means it fulfils both the letter and the spirit of the Budapest Open Access Initiative’s definition of OA.
It’s great that we in vertebrate palaeontology can add this journal to the roster of OA journals in our field, already including Palaeontologia Electronica, Acta Palaeontologica Polonica, Palarch’s Journal of Vertebrate Paleontology, The Fossil Record and others. (Plus of course there is lots of vertebrate palaeontology in PLOS ONE and PeerJ.) I think that as a field, we are ahead of the curve in making the transition towards an all-OA literature.
Epipophyses, the forgotten apophyses: not just for sauropods!
February 2, 2015
Matt’s last post contained a nice overview of the occurrence of epipophyses in sauropodomorphs: that is, bony insertion points for epaxial ligaments and muscles above the postzygapophyseal facets. What we’ve not mentioned so far is that these structures are not limited to sauropods. Back when we were preparing one of the earlier drafts of the paper that eventually became Why sauropods had long necks; and why giraffes have short necks (Taylor and Wedel 2013a), I explored their occurrence in related groups. But that section never got written up for the manuscript, and now seems as good a time as any to fix that.
Theropods (including birds)
Most obviously, epipophyses occur in theropods, the sister group of sauropodomorphs.

Taylor and Wedel (2013a: figure 11). Archosaur cervical vertebrae in posterior view, Showing muscle attachment points in phylogenetic context. Blue arrows indicate epaxial muscles attaching to neural spines, red arrows indicate epaxial muscles attaching to epipophyses, and green arrows indicate hypaxial muscles attaching to cervical ribs. While hypaxial musculature anchors consistently on the cervical ribs, the principle epaxial muscle migrate from the neural spine in crocodilians to the epipophyses in non-avial theropods and modern birds, with either or both sets of muscles being significant in sauropods. 1, fifth cervical vertebra of Alligator mississippiensis, MCZ 81457, traced from 3D scans by Leon Claessens, courtesy of MCZ. Epipophyses are absent. 2, eighth cervical vertebra of Giraffatitan brancai paralectotype HMN SII, traced from Janensch (1950, figures 43 and 46). 3, eleventh cervical vertebra of Camarasaurus supremus, reconstruction within AMNH 5761/X, “cervical series I”, modified from Osborn and Mook (1921, plate LXVII). 4, fifth cervical vertebra of the abelisaurid theropod Majungasaurus crenatissimus,UA 8678, traced from O’Connor (2007, figures 8 and 20). 5, seventh cervical vertebra of a turkey, Meleagris gallopavo, traced from photographs by MPT.
In this figure from the 2013 paper, the rightmost images show cervical vertebrae of Majungasaurus (an abelisaurid theropod) and a turkey, both in posterior view. The red arrows indicate epaxial musculature pulling on the epipophyses. They are particularly prominent in Majungasaurus, rising almost a full centrum’s height above the postzygapophyseal facets.
The epipophyses are very prominent in the anterior cervicals of Tyrannosaurus, but much less so in its posterior cervicals — presumably because its flesh-tearing moves involved pulling upwards more strongly on the anterior part of the neck. Here’s a photo of the AMNH mount, from our post T. rex‘s neck is pathetic:
You can see something similar in the neck of Allosaurus, and the trend generally seems to be widespread among theropods.
Ornithischians
Note the very prominent epipophyses protruding above the postzygs in the anterior cervicals of this Heterodontosaurus in the AMNH public gallery:

Cast of AMNH 28471, Heterodontosaurus tucki, collected from the Early Jurassic Voisana, Herschel district, South Africa. Neck in left lateral view.
Here’s the hadrosaur Corythosaurus:

AMNH 5338, Corythosaurus casuarius, from the Campanian of the Red Deer River, Alberta, Canada. Collected by Barnum Brown and P. C. Kaisen, 1914. Cervicals 1-4 in right lateral view.
The prominent vertebra is C2: note that is has both a modest blade-like neural spine and prominent epipophyses — but that already by C3 the epipophyses are gone. Here is that C2 postzyg/epipophyses complex is close-up, clearly showing anteroposteriorly directed striations on the epipophysis, presumably representing the orientation of the attaching ligaments and muscles:
Here’s a close-up of the neck of the boring ornithopod Tenontosaurus, also in the AMNH gallery. (I’m not sure of the specimen number — if anyone can clarify, please leave a comment).
The interesting thing here is that it its axis (C2) seems to lack epipophyses (unlike C3), and to have a tall blade-like neural spine, as seen in mammals. We don’t really see C2 spines this big in other dinosaurs — compare with the much more modest spine in Corythosaurus, above. The texture of this part of the Tenontosaurus specimen looks suspicious, and I wonder whether that neural spine is a fabrication, created back in the day by AMNH staff who were so used to mammals that they “knew” what a C2 should look like? Anyway, the epipophysis above the postzyg of C3 is very distinct and definitely real bone.
Pterosaurs
Things get much more difficult with pterosaurs, because their cervicals are so fragile and easily crushed (like the rest of their skeleton, to be fair). While it’s easy to find nice, well-preserved ornithischian necks on display, you don’t ever really see anything similar for pterosaurs.
As a result, we have to rely on specimen photographs from collections, or more often on interpretive drawings. Even high-resolution photos, such as the one in Frey and Tischlinger (2012: fig 2) tend not to show the kind of detail we need. Usually, the only usable information comes from drawings made by people who have worked on the specimens.
Here, for example, is Rhamphorhynchus, well known as the most difficult pterosaur to spell, in figure 7 from Bonde and Christiansen’s (2003) paper on its axial pneumaticity:
It’s not the main point of the illustration, but you can make out clear epipophyses extending posteriorly past the postzygapophyseal facets in at least C3 and C5 — in C4, the relevant area is obscured by a rib. (Note that the vertebrae are upside down in this illustration, so you need to be looking towards the bottom of the picture.)
I’m pretty sure I’ve seen a better illustration of Rhamphorhynchus epipophyses, but as I get older my memory for Rhamphorhynchus epipophyses is no longer what it used to be and I can’t remember where. Can anyone help?
But also of interest is the azhdarchid pterosaur Phosphatodraco, here illustrated by Pereda Suberbiola et al. (2003):

Pereda Suberbiola et al. (2003: fig. 3). Phosphatodraco mauritanicus gen. et sp. nov, OCP DEK/GE 111, Late Cretaceous (Maastrichtian), Morocco: (a) cervical five in two fragments, ventral and left lateral views; (b) cervical six in ventrolateral view; (c) cervical seven in ventral view; (d) cervical eight in left lateral view; (e) cervical nine in posterior view; (f) cervical six in anterior view. c, centrum; co, condyle; ct, cotyle; hyp, hypapophysis; nc, neural canal; ns, neural spine; poe, postexapophysis; poz, postzygapophysis; prz, prezygapophysis; su, sulcus; tp, transverse process.
The cervicals of Phosphatodraco seem to have no epipophyses. So they were not ubiquitous in pterosaurs.
What does it all mean? This post has become a bit of a monster already so I’ll save the conclusion for another time. Stay tuned for more hot epipophyseal action!
References
- Bonde, Niels and Per Christiansen. 2003. The detailed anatomy of Rhamphorhynchus: axial pneumaticity and its implications. pp 217-232 in: E. Buffetaut and J-M Mazin (eds), Evolution and Palaeobiology of Pterosaurs. Geological Society, London, Special Publications 217. doi:10.1144/GSL.SP.2003.217.01.13
- Frey Eberhard and Helmut Tischlinger. 2012. The Late Jurassic Pterosaur Rhamphorhynchus, a Frequent Victim of the Ganoid Fish Aspidorhynchus? PLoS ONE 7(3):e31945. doi:10.1371/journal.pone.0031945
- Janensch, Werner. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica, Supplement 7 3:27-93.
- O’Connor Patrick M. 2007. The postcranial axial skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. pp 127-162 in: S. D. Sampson., D. W. Krause (eds), Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Society of Vertebrate Paleontology Memoir 8.
- Osborn, Henry F., and Charles C. Mook. 1921. Camarasaurus, Amphicoelias and other sauropods of Cope. Memoirs of the American Museum of Natural History, New Series 3:247-387.
- Pereda Suberbiola, Xabier, Nathalie Bardet, Stéphane Jouve, Mohamed Iarochène, Baadi Bouya and Mbarek Amaghzaz. 2003. A new azhdarchid pterosaur from the Late Cretaceous phosphates of Morocco. pp 79-90 in: E. Buffetaut and J-M Mazin (eds), Evolution and Palaeobiology of Pterosaurs. Geological Society, London, Special Publications 217. doi:10.1144/GSL.SP.2003.217.01.08
- Taylor, Michael P., and Mathew J. Wedel. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36 doi:10.7717/peerj.36
What have you done with Aquilops!?
January 16, 2015
Awesome things, that’s what. In a previous post I asked people to make cool things with Aquilops. And you have. In spades. Here’s a compilation of the best things so far.
First, a blast from the past. As far as I know, the first life restoration of Aquilops was actually this sketch by Mike Keesey, which he executed while sitting in the audience for Andy Farke’s talk on our not-yet-named ceratopsian at SVP 2013. Mike kindly sat on it for over a year, and then posted it to his Flickr stream after the paper came out last month. A small adventure ensued – a site called News Maine (which I refuse to link to) used Mike’s image without his knowledge or permission in their Aquilops article. When he wrote to them and pointed out their breach, they swapped his image for one of Brian Engh’s, but still did not provide an image credit! Now their Aquilops article appears to have been taken down entirely. Good riddance.
Mike says of his Aquilops, “I’d like to make it clear that it was done from looking at a slide during a talk and not meant to be rigorous or accurate.” But I dig it (and I did get his permission to repost it!). It has character – it looks weary, maybe a little grumpy, like a pint-size curmudgeon. And it definitely wants you kids to get off its damn lawn. If you want to see more of Mike’s sketches in this style from SVP 2013 – and you should, they’re very good – go here.
Second, people have taken the paper skull I posted before and used it as the raw material for significantly more awesome versions. Gareth Monger made the more-fully-3D version shown here, and posted about it at his Pteroformer blog. I think it’s totally wicked, and I’d make my own if I had the patience and skill.
But I don’t. Fortunately, there is help for me: Kathy Sanders, the Director of Outreach at the Raymond M. Alf Museum here in Claremont (where Aquilops lead author Andy Farke is based), took my skull drawings and turned them into a papercraft finger puppet suitable for all ages. I know it’s suitable for all ages because at the Alf Museum’s Family Science Discovery Day last Saturday, almost every one of many children going through the museum had an Aquilops puppet on one hand. London and I each made one, and we spent a lot of time Saturday evening goofing off with them.

Alas, poor Aquilops! I knew him, readers; a fellow of minuscule crest, of most excellent beak; he hath borne my career on his head a whole month; and now, how adored in my imagination he is!
You can see a little video of the puppet in action on Ashley Hall’s Tumblr, Lady Naturalist. And you can get the files to make your own from the Alf Museum website, here. You’ll also need a couple of brads to make the jaw hinge joints, and a smaller-than-normal hole punch is handy for making the holes, but ultimately any method that produces a small, round hole will work.
Heads not enough for you? Want a complete Aquilops to call your own? You are in luck – not one but two such critters have emerged from the virtual undergrowth. James Appleby, a 16-year-old who blogs at Edaphosaurus.com, did something that would not have occurred to me in a million years: he took the baby Aquilops (Aquilopses?) from Brian Engh’s awesomely detailed Cloverly environment scene and made a paper model. It’s a great example of how releasing something under an open license – in this case CC-BY – encourages people to do cool new things with your work. You can get the parts here.
Want something cuter? Try this papercraft Aquilops toy, another creation of the apparently indefatigable Gareth Monger. Post and parts here. I love Gareth’s concluding exhortation: “Edit it, share it, distribute it. Keep it fun and keep it free.” That’s practically the Aquilops motto.
I’m probably just scratching the surface here. I know there has been a flowering of awesome Aquilops restorations on DeviantART. David Orr has an adorkable ‘Pixel Aquilops‘ t-shirt on Redbubble. Tell me what else is out there, and keep making new stuff. Let’s keep this thing rolling.
And a big thank you to Mike, Gareth, Kathy, Ashley, and James for making cool Aquilops stuff and posting it for people to see and build. You all rock.
Aquilops wants to play
December 28, 2014
Here are three fun things to do with Aquilops, in descending order of how much gear they require.
1. Print your own Aquilops fossil.
Got access to a 3D printer? Download the 3D models of the holotype skull, OMNH 34557, that we published as supplementary info with the paper, and rock out. Here’s a test print that the guys in our scientific visualization center made for me. I gotta tell you, after 18 and a half years of sauropods, it’s very satisfying to have a holotype I can shove in my pocket. UPDATE a few weeks later: read Zach Miller’s post about his 3D-printed Aquilops holotype, it’s cool.
Want a bigger challenge? If you printed it in steel or titanium, it would probably make a decent bottle opener. Just sayin’.
2. Cut and fold your own Aquilops skull.
Got access to a regular printer? Download these files, print, cut, fold, and enjoy:
Aquilops cut-and-fold – 2 small skulls. Should print 2 skulls at about life size on regular 8.5 x 11 or A4 paper. Warning: they’re small.
Aquilops cut-and-fold – 1 large skull. Warning: still not very big.
I found that regular printer paper is too flimsy to really hold the shape, so I built mine an endoskeleton (endoskull?) out of bits of cut up file folder. Just about anything would work. Teaching a course in which Aquilops could be relevant (which is all of them)? Have your students roll their own paper skulls, and use them as a springboard for talking about dinosaurs or evolution or anatomy or current events or whatever tickles your fancy.
Want a bigger challenge? My cut-and-fold skull is the epitome of laziness: I just mirror-image duplicated my lateral view and sandwiched the dorsal view in between. You could definitely make a better one, and with all of the free Aquilops data online, you have all the raw material you need. If you come up with something good, let me know in the comments and I’ll feature it in a later post.

This is not the model, this is just a screenshot. But when you go to the link below, the 3D model will load in a window that looks just like this. Model by Garrett Stowe, copyright and courtesy of the Sam Noble Oklahoma Museum of Natural History.
3. Play with the 3D models.
No access to a printer of any sort? Well, you can still have fun with Aquilops in your browser and on your hard drive. If you want to see the holotype specimen as it looks today, there are 3D PDFs in the paper’s supplementary info. But if you haven’t been to the OMNH Aquilops page to play with the model of the complete, uncrushed skull that Garrett Stowe made, go do that now. On the same page is a 3D life restoration of Aquilops, also by Garrett Stowe. Both models are awesome, and Garrett is still working on them so they’ll be even better soon.
Want a bigger challenge? Surprise me. We made Aquilops freely available to the world, so you can take any and all of the stuff that we published – the figures from the paper, Brian Engh’s artwork, the 3D models of the fossil – and make cool new things that we haven’t thought of. C’mon, let’s play.
Aquilops in today’s LA Times
December 13, 2014
Hey, just a quick announcement this time: today’s LA Times has a nice little article on Aquilops on page A6. It’s also available online here. Good luck tracking down a hardcopy – our local Barnes & Noble doesn’t carry the LA Times (not sure which party that reflects worse on), and I got the last copy from a gas station down the street. I’m so happy that they used Brian’s artwork!
I’ll put up a better scan when I get back to work next week. Later: I did.