Herons lie, part 2

July 28, 2020

I just stumbled across this tweet from bird photographer Gloria (@Lucent508). Four photos of the same individual, apparently a Green Heron. In this image, I am juxtaposing the third image (left-right flipped and scaled up) with the first image (filled out on the left with a stretched reflection of part of the background).

Where has it put that long neck in the lower image? We know it’s in there somewhere, but one thing is for sure: herons lie!

See also: Herons lie (and so do shoebills), and the whole ongoing Necks Lie sequence.

My thanks to Gloria for having taken the excellent photographs that made this post possible.

For those following the saga of Oculudentavis (the beautiful tiny dinosaur preserved in amber that turned out to be a lizard), three more things.

Xing et al. 2020, Extended Data Fig. 2. Computed tomography scan of HPG-15-3 in palatal view, with the mandibles removed, and an isolated quadrate. a, Full palatal view. Dashed square box in a indicates the region enlarged in b [not shown]. bp, basipterygoid process; bs, basisphenoid plate; bsr, basisphenoid rostrum; ch, choana; dt, developing tooth; pt, pterygoid; pp, papillae; pmc, medial contact of the palatal processes of the premaxillae.

First, I’ve updated the timeline in Friday’s post to include several more events, kindly pointed out by commenters Pallas1773 and Ian Corfe. Check back there to better understand the increasingly confusing sequence of events.

Second, David Marjanovic provided an excellent summary of the ICZN issues in a message on the Dinosaur Mailing List. (Summary: you can’t invalidate a name by retracting the paper in which it was erected.) David knows the details of the code as well as anyone, so his analysis is well worth reading.

Finally — and annoyingly, I can’t remember who put me on to this — an interesting Chinese-language article was published two days ago about the retraction [link] [Google translation]. (Apparently the word translated “oolong” should be “mistake”.) It contains a statement from Xing Lida, lead author of the original paper, on the reason for the retraction:

The reporter found that the key to retracting the manuscript was “research progress has been made on a new specimen with a more complete preservation of the same origin discovered by the author team.” The team realized that the skull of the new specimen was very similar to HPG-15-3, but the skeleton behind the head showed a typical squamosaurus form and should be classified as squamosaurus. This indicates that HPG-15-3 is likely to belong to the squamatosaurus, which is different from the initial conclusion.

But the article goes on to note that “there are many loopholes in this withdrawal statement”. It contains some illuminating analysis from Oliver Rauhut and Per Ahlberg, including this from Rauhut: “The main problem of the paper is that the author basically preconceived that the specimen was a bird and analyzed it under this premise (this is not necessarily intentional)“. And it claims:

As early as the evening of March 19, the corresponding author of the paper said in an interview with Caixin Mail, “She recognized the questioner’s conclusion-this is more likely to be a lizard than a bird.”

And this of course was nearly three months before the same author (Jingmai O’Connor) lead-authored the preprint reasserting the avian identity of Oculudentavis.

The more I read about all this, the stranger it seems.

Update (22 August 2020)

A new paper at Zoosystema (Dubois 2020) summarises the nomenclatural situation, citing SV-POW! in passing, and concludes that the name remains nomenclaturally valid despite the retraction of the paper in which is was named — quite rightly.

References

 

Since we wrote about the putative tiny bird Oculudentavis (Xing et al. 2020) last time, things have become rather weirder. I want to discuss two things here: how we got to where we are, and what happens to the zoological name Oculudentavis khaungraae.

Xing et al. 2020, Extended Data Fig. 1. Close-up photographs of HPG-15-3. Part a, Entire skull in left lateral view. The black arrows indicate decay products from the soft tissue of the dorsal surface of the skull and the original position of skull, which drifted before the resin hardened. Scale bars, 2 mm.

First, how we got here. The timeline is a little confused but it seems to go like this:

  • 11 March: Xing et al. (2020) name Oculudentavis khaungraae, describing it as a bird. [link]
  • 11 March: In a Facebook thread on the day the paper is published, Tracey Ford claims that at least some of the authors were told at a symposium by lizard workers that their specimen was a lizard.
  • 12 March: Mickey Mortimer (very quick work!) publishes a blog-post titled “Oculudentavis is not a theropod”, making a solid argument. [link]; see also the followup post [link]
  • 13 March: Andrea Cau, working independently, publishes a blog post in Italian titled “Doubts about the dinosaurian (and avian) state of Oculudentavis” (translated), also making a solid case [link]
  • 13 March: Wang Wei et al. (the same authorship team as in the next entry) publish a detailed, technical Chinese-language article arguing that Oculudentavis is a squamate. [link] [Google translation]
  • 18 March: Li et al. (2020), in a BioRxiv preprint, formally dispute the identity of Oculudentavis, suggesting it is a squamate. [link].
  • 3 May: at the monthly meeting of the Southern California Paleontological Society, where Jingmai O’Connor gives the talk on “The evolution of dinosaurian flight and the rise of birds” she is allegedy “quite upfront about Oculudentavis being a lizard” [link]
  • 29 May: a note is added to the online version of Xing et al. 2020 stating “Editor’s Note: Readers are alerted that doubts have been expressed about the phylogenetic placement of the fossil described in this paper. We are investigating and appropriate editorial action will be taken once this matter is resolved.” [link]. (Steven Zhang later says on Facebook, “I’ve been reliably told by one of the coauthors of the Li et al. commentary piece, Nature rejected the comment from publication but then flagged up the matter as an Editor’s Note.”)
  • 14 June: O’Connor et al. (2020) (mostly the same authors as of the original description) reassert the avian identity of Oculudentavis. [link]
  • 22 July 2020: the original article (Xing et al. 2020) is retracted, with the reason given as “We, the authors, are retracting this Article to prevent inaccurate information from remaining in the literature. Although the description of Oculudentavis khaungraae remains accurate, a new unpublished specimen casts doubts upon our hypothesis regarding the phylogenetic position of HPG-15-3.” [link]

(Note: Facebook always seems very ephemeral, so here is a screenshot of the conversation in question:

I am aware that this is only hearsay, and rather vague: what symposium, what lizard workers? But I’ll leave it here as it does seem to be part of the story — judge it as you will.)

The unambiguously strange thing here is the O’Conner et al. preprint, published after O’Connor had seemingly accepted the squamate identity of Oculudentavis, but arguing for an avian identity. The O’Connor et al. rebuttal of Li et al. is pretty clear on its position, stating at the bottom of page 2:

Our parsimony-based phylogenetic analysis run using TNT placed Oculudentavis in Aves … Forcing a relationship with squamates required 10 additional steps.

But it also contains the rather extraordinary statement “Although in the future new information may prove we are incorrect in our original interpretation … this is in no way due to gross negligence” (p3).

I think we have to assume that O’Connor changed her mind between 11 March (the original publication) and 3 May (the SoCal meeting), then changed it back again by 14 June (the rebuttal of Li et al.), and finally accepted her first change of mind had been correct by 22 July (the retraction). But other interpretations are possible.

And of course the key question here lingers: why was the paper retracted, rather than merely corrected? And why does the journal say the authors retracted it, when the lead author says that the journal did it against their will?

Anyway, enough of the past. What of the future of the name Oculudentavis khaungraae?

The first thing we can all agree on is that (assuming Oculudentavis does turn out to be a squamate), the fact that the generic name misidentifies the phylogenetic position of the taxon is neither here nor there. Zoological nomenclature is full of such misnomers: they are not, and never have been, a reason to remove a name from the record.

But the retraction of the article in which the name was published is another matter. Does it mean, as some have argued, that the name is now nomenclaturally void?

I would strongly argue that no, it does not. There are several lines of reasoning.

First, the International Code of Zoological Nomenclature does not mention retractions at all — from which the simplest conclusion to draw is that it does not recognise them, and considers a paper once published to be published forever.

Second, the wording of the code pertains to the act of publication, not to ongoing status. In Article 8 (What constitutes published work), section 8.1 (Criteria to be met) says “A work must … be issued for the purpose of providing a public and permanent scientific record”. And the Oculudentavis paper certainly was issued for that purpose.

Third, the paper is still out there and always will be: even though electronic copies now bear the warning “This article was retracted on 22 July 2020”, there are thousands of copies of Nature 579 in libraries around the world. They can’t all be amended. What’s written is written. Quod scripsi, scripsi.

And this leads us to the final and most fundamental point: you can’t rewrite history: not one line. The simple and unavoidable reality is that the paper was published. That happened. A retraction can’t undo that — all it really amounts to is an expression of regret.

So the paper was published, and still is published, and the name established in it remains, and is forever tied to the type specimen HPG-15-3. If someone describes the “new unpublished specimen” referred to above, they have no choice but to use the established name Oculudentavis khaungraae: they don’t have the option of naming it (say) Oculudentosaurus instead.

At least, that’s how it seems to me. The International Commission on Zoological Nomenclature has been informally invited on Twitter to state a position, but has not responded at the time of writing — but then it’s not tweeted at all since April, so who knows what (if anything) is going on there? I heard somewhere that Oculudentavis is not being discussed on the ICZN mailing list, but I can’t remember where.

Now would be a good time for them to issue some guidance regarding retractions. And hey, ICZN? If you want to use any of my points above, feel free!

References

 

Back in March, Nature published “Hummingbird-sized dinosaur from the Cretaceous period of Myanmar” by Xing et al. (2020), which described and named a tiny putative bird that was preserved in amber from Myanmar (formerly Burma). It’s a pretty spectacular find.

Xing et al. (2020: figure 1). a, Photograph of the amber piece with skull ventrolaterally exposed. b, c, Scan (b) and drawing (c), left lateral view. d, e, Scan (d) and drawing (e), rostral view. f, g, Scan (f) and drawing (g), occipital view. h, i, Scan (h) and drawing (i), dorsal view. de, dentary; fr, frontal; hy, hyoid bone (or bones); jg, jugal; la, lacrimal; mx, maxilla; pa, parietal; pm, premaxilla; po, postorbital; qd, quadrate; sc, scleral ossicle; so, supraoccipital; sq, squamosal; th, teeth. Scale bars, 5 mm; longer scale bar below b applies to bi.

Today, though, that paper is retracted.

That’s a very rare occurrence for a palaeontology paper. And it raises a lot of questions. The retraction notice reads, in full:

We, the authors, are retracting this Article to prevent inaccurate information from remaining in the literature. Although the description of Oculudentavis khaungraae remains accurate, a new unpublished specimen casts doubts upon our hypothesis regarding the phylogenetic position of HPG-15-3.

But we constantly see papers whose phylogenetic hypotheses are overturned by new specimens. We usually deal with this by writing a new paper. Why, in this case, is there a retraction? Something smells wrong here.

And the plot thickens in Retraction Watch’s account: corresponding author Jingmai O’Connor told them:

I don’t agree with the retraction but there is no point in fighting it, so we all signed it.

I cannot say why Nature chose to retract, I cannot hypothesize on their inner machinations. […] It is also not that unusual for paleontologists to misidentify things and for new information to correct previous hypotheses. However, Nature chose not to publish the Matter’s Arising and instead retracts our paper – they must have their reasons.

This doesn’t add up. The retraction notice explictly states that the authors retracted the original paper — yet the corresponding author says that the journal did it, more or less against the authors’ will.

I don’t know what’s going on here. I agree with O’Connor that “It’s unfortunate because this way science can’t simply correct itself (as it is supposed to do)”. If, as Li et al. (2000) argue, Oculudentavis is actually a squamate (lizard), well, fine: they can publish their conclusion, and the community will arrive at a consensus as to which identification is correct. That’s how it works, right? So why the retraction?

And there’s more: what does this mean for zoological nomenclature? Is the name Oculudentavis khaungraae still nomenclaturally valid? Opinions on this seem to vary (see the Dinosaur Mailing List thread beginning with Ben Creisler’s announcement of the retraction.)

I lean to the interpretation that, since the International Code on Zoological Nomenclature does not mention retractions, it implicitly takes the position that a paper once published is published forever. On that basis, the name Oculudentavis remains valid and attached to the holoype specimen — even if that name, with its -avis suffix, proves to have been poorly chosen in pertaining to a non-bird. (After all, there is plenty of precedent for misleading names staying in place: the whale Basilosaurus is not a saurian, and the clade of “false crocodiles” Pseudosuchia includes the true crocodiles.)

This doesn’t seem to be what Springer Nature wants: in a Facebook exchange forwarded to me by a friend who I will leave anonymous unless he or she chooses to out him or herself, Henry Gee comments “The retraction means the paper is erased from the record, and this includes the name”.

I think this is simply incorrect. But I am no expert: I await comments from those more versed in the intricacies of the ICZN.

At any rate, I can’t help but suspect that something is going on here that’s not being clearly stated. Could it be to do with the fact that Myanmar amber is itself controversial, due to the human rights record of the Myanmar regime? Is it even possible that one or more or the authors of the original Oculudentavis colluded in describing it as a bird when they knew it was something else? I don’t know (and to be 100% clear, I am not accusing anyone of anything). But I do know that Nature‘s vague and possibly misleading retraction notice is not helping, and is not in the spirit of transparency that we aim to cultivate in the sciences.

I’m pretty sure we don’t yet know the full story.

References

 

The new monster redescription of Dilophosaurus by Adam Marsh and Tim Rowe came out in the Journal of Paleontology last week. I’m blogging about it now because the OA link just went live yesterday. So you can get this huge, important paper for free, at this link.

There’s a lot of stuff to love here: beautiful, clear photos of every element from every specimen from multiple angles, interesting anatomical and phylogenetic findings, and of particular interest on this blog, some very cool documentation of serial variation in pneumatic features. Here in Figure 62 we see serial changes in the posterior centrodiapophyseal laminae, which in some of the vertebrae are split around an intermediate fossa, or have accessory laminae.

One thing that I’ve thought a lot about, but written not so much about (yet), is pneumatic features on the ventral surfaces of vertebrae and how they change along the column. So I was excited to see Figure 64, which shows how fossae change serially on both the lateral and the ventral surfaces of the presacral centra. As far as I know, no-one has ever done something like this for a sauropod (please correct me in the comments if I’ve forgotten any examples), but it could be done and the results would be interesting, particularly for taxa like Haplocanthosaurus or Dicraeosaurus that have both lateral and ventral fossae and keels in at least some of the vertebrae.

Here’s Figure 66, a beautiful new skull reconstruction and life restoration, both by Brian Engh. There’s a lot of Engh/Dilophosaurus stuff going on right now, including a new video for the St. George Dinosaur Discovery Site museum (short version here, longer version available at the museum, and I think on Brian’s Patreon page), and, uh, another thing that will be revealed in the not-too-distant future.

I hope everyone is well and safe. When I first realized we were going into quarantine back in March, I had big plans for doing various series of posts here, but almost immediately the demand of getting med school anatomy online ate up all my time and creative energy. Just barely getting back on my feet now. I know Mike has been busier than normal, too. So please be patient with us, and we’ll try to remember to feed the blog now and then.

Reference

Marsh, Adam D., and Rowe, Timothy B. 2020. A comprehensive anatomical and phylogenetic evaluation of Dilophosaurus wetherilli (Dinosauria, Theropoda) with descriptions of new specimens from the Kayenta Formation of northern Arizona. Journal of Paleontology Volume 94, Supplement S78: 1-103. DOI: https://doi.org/10.1017/jpa.2020.14

This is the Jurassic World Legacy Collection Brachiosaurus. I think it might be an exclusive at Target stores here in the US. It turns up on other sites, like Amazon and eBay, but usually from 3rd-party sellers and with a healthy up-charge. Retails for 50 bucks. I got mine for Christmas from Vicki and London. Here’s the link to Target.com if you want to check it out (we get no kickbacks from this).

I thought it would be cool to leverage this thing at outreach events to talk about the new Brachiosaurus humerus that Brian Engh found last year, which a team of us got out of the ground and safely into a museum last October (full story here). But I needed a Brachiosaurus humerus, so I made one, and in this post I’ll show you how to do the same, for next to no money.

Depending on what base you start with and what materials you use, you could build a scale model of a Brachiosaurus humerus at any size. I wanted one that would match the JWLC Brach, so I started by taking some measurements of that. Here’s what I got:

Lengths

  • Head: 45mm
  • Neck: 455mm (x 20 = 9.1m = 29’10”)
  • Torso: 320mm
  • Tail: 320mm
  • Total: 1140 (x 20 = 22.8m = 74’10”)

Heights

  • Max head height: 705mm (x 20 = 14.1m = 46’3″)
  • Withers height: 360mm (x 20 = 7.2m = 23’7″)

The neck length, total length, and head height are pretty close to the mounted Giraffatitan in Berlin. The withers are a little high, as is the bottom of the animal’s belly. I suspect that the limbs on the model are oversized by about 10%. Nevertheless, the numbers say this thing is roughly 1/20 scale.

The largest humeri of Brachiosaurus and Giraffatitan are 213cm, which is about 3mm shy of 7 feet. So a 1/20 scale humerus should be 106.5mm, or 4.2 inches, or four-and-a-quarter if you want a nice, round number.

Incidentally, Chris Pratt is 6’2″ (74 inches), and the Owen Grady action figure is 3.75″, which is 1/20 of 6’3″. So the action figure, the Brachiosaurus toy highly detailed scientific model, and a ~4.2″ humerus model will all be more or less in scale with each other.

I used a chicken humerus for my base. The vast majority of chickens in the US are slaughtered at 5 months, so they don’t get nearly big enough for their humeri to be useful for this project. Fortunately, there’s a pub in downtown Claremont, Heroes & Legends, that has giant mutant chicken hot wings, so I went there and collected chicken bones in the guise of a date. The photo above shows three right humeri (on the left) and one left humerus (on the right) after simmering and an overnight degreasing in a pot of soapy water. I used the same bone clean-up methods as in this post.

What should you do if you don’t have access to giant mutant chicken wings? My method of Brachio-mimicry involves some sculpting, so any reasonably straight bone that bells out a bit at the ends would work. You could use a drumstick in a pinch. Here are my humeri whitening in a tub of 3% hydrogen peroxide from the dollar store down the street.

Brachiosaurid humeri vary somewhat but they all have certain features in common. Here’s the right humerus of Vouivria, modified from Mannion et al. (2017: fig. 19) to show the features of interest to brachiosaur humerus-sculptors. The arrows on the far left point to a couple of corners, one where the deltopectoral crest (dpc in the figure) meets the proximal articular surface, and the other where the articular surface meets the long sweeping curve of the medial border of the humeral shaft.

Here’s a more printer-friendly version of the same diagram. Why did I use Vouivria for this instead of one of the humeri of Brachiosaurus itself? Mostly because it’s a complete humerus for which a nice multi-view was available. Runner-up in this category would have to go to the humerus of Pelorosaurus conybeari figured by Upchurch et al. (2015: fig. 18) in the Haestasaurus paper–here’s a direct link to that figure.

I knew that I’d be doing some sculpting, and I wanted a scale template to work off of, so I made these outlines from the Giraffatitan humerus figured by Janensch (1950) and reproduced by Mike in this post (middle two), and from the aforementioned Pelorosaurus conybeari humerus shown by Mike in this post (outer two). I scaled this diagram so that when printed to fill an 8.5×11 piece of printer paper, the humerus outlines would all be 4.25″–the same nice-round-number 1/20 scale target found above. Here’s a PDF version: Giraffatitan and Pelorosaurus humeri outlines for print.

Here’s the largest of my giant mutant chicken humeri, compared to the outlines. The chicken humerus isn’t bad, but it’s too short for 1/20 scale, the angles of the proximal and distal ends are almost opposite what they should be, and the deltopectoral crest is aimed out antero-laterally instead of facing straight anteriorly. Modification will be required!

Here’s my method for lengthing the humerus: I cut the midshaft of another humerus out, and swapped it in to the middle of the prospective Brachiosaurus model humerus.

To my immense irritation, I failed to get a photo of the lengthened humerus before I started sculpting on it. In the first wave of sculpting, I built up the proximal end and the deltopectoral crest, but missed some key features. On the right, I glued the proximal and distal ends of the donor humerus together; I might make this into a Haestasaurus humerus in the future.

I should mention my tools and materials. I have a Dremel but it wasn’t charged the evening I sat down to do this, so I made all the humerus cuts with a small, cheap hacksaw. I used superglue (cyanoacrylate or CA) for quick joins, and white glue (polyvinyl acetate or PVA) to patch holes, and I put gobs of PVA into the humeral shafts before sealing them up. For additive sculpting I used spackling compound, same stuff you use to patch holes in walls and ceilings, and for reductive sculpting I used sandpaper. I got most of this stuff from the dollar store.

Here we are after a second round of sculpting. The proximal end has its corners now, and the distal end is more accurately belled out, maybe even a bit too wide. It’s not a perfect replica of either the Giraffatitan or Pelorosaurus humeri, but it got sufficiently into the brachiosaurid humerus morphospace for my taste. A more patient or dedicated sculptor could probably make recognizable humeri for each brachiosaurid taxon or even specimen. I deliberately left it a bit rough in hopes that it would read as timeworn, fractured, and restored when painted and mounted. Again, a real sculptor could make some hay here by putting in fake cracks and so on.

The cheap spackling compound I picked up did not harden as much as some other I have used in the past. I had planned on sealing anyway before I painted, and for porous materials a quick, cheap sealant is white glue mixed with water. Here that coat of diluted PVA is drying, and I’m holding up a spare chicken humerus to show how far the model humerus has come.

Before painting, I drilled into the distal end with a handheld electric drill, and used a bamboo barbeque skewer as a mounting rod and handle. I hit it with a couple of coats of gray primer, then a couple of coats of black primer the next day. I could have gotten fancier with highlights and washes and so on, but I was scrambling to get this done for a public outreach event, in an already busy week.

And here’s the finished-for-now product. A couple of gold-finished cardboard gift boxes from my spare box storage gave their lids to make a temporary pedestal. When I get a version of this model that I’m really happy with, either by hacking further on this one or starting from scratch on a second, I’d love to get a wooden or stone trophy base with a little engraved plaque that looks like a proper museum exhibit, and replace the bamboo skewer with a brass rod. But for now, I’m pretty happy with this.

The idea of making dinosaurs out of chicken bones isn’t original with me. I was inspired by the wonderful books Make Your Own Dinosaur Out of Chicken Bones and T-Rex To Go, both by Chris McGowan. Used copies of both books can be had online for next to nothing, and I highly recommend them both.

If this post helps you in making your own model Brachiosaurus humerus, I’d love to see the results. Please let me know about your model in the comments, and happy building!

References

  • Janensch, Werner. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3: 27-93.
  • Mannion PD, Allain R, Moine O. (2017The earliest known titanosauriform sauropod dinosaur and the evolution of BrachiosauridaePeerJ 5:e3217 https://doi.org/10.7717/peerj.3217
  • Upchurch, Paul, Philip D. Mannion and Micahel P Taylor. 2015. The Anatomy and Phylogenetic Relationships of “Pelorosaurus” becklesii (Neosauropoda, Macronaria) from the Early Cretaceous of England. PLoS ONE 10(6):e0125819. doi:10.1371/journal.pone.0125819

Heinrich Mallison sent me this amazing photo, which he found unattributed on Facebook:

Infuriatingly, I’ve not been able to track down an original source for this: searching for the text just finds a bunch of reposts on meme sites, and Google’s reverse image search just reports a bunch of hits on Reddit:

The line-drawing shows some scientific understanding of bird skeletons, so I imagine someone put real thought into this and is unhappy that the image is propagating uncredited. If that person reads this, please leave a comment: I’d love to credit it properly.

Anyway … what’s going on here?

Birds (like all vertebrates) have two tubes running down the ventral aspect of the neck (i.e. below the vertebrae): the trachea, for breathing, and the oesophagus, for swallowing. But these both open into the back of the mouth and are not piped up past it. I’ve not dissected enough bird heads to show this clearly, but when I was taking Veronica apart the trachea was pretty visibly ending in the mouth cavity, not plumbed up past the mouth into the nasal space:

So yes, I think it’s true: shoebills can bulge their spines out of their mouths.

Why? My best guess that there’s just nowhere else for the spine to go when the neck is retracted. There’s a big empty space in the mouth, why let it go to waste?

In lieu of any new science today, have some memes, and a wonderful day!

A timeless classic.

In case you’re wondering, that’s “rolling on the beach laughing my telson off”. Horseshoe crabs have been around for 445 million years, about twice as long as mammals, turtles, and dinosaurs.

Made this last Friday afternoon, in lieu of other stuff I should have been doing. I’m gloating now because the campus is closed and I’m untouchable! Mwa-ha-ha-HAAA!!

Natural selection is a pathway to many abilities that some consider to be…fully rad.

Spotted this beauty in the collections at Dinosaur Journey this past summer. With the front end of the centrum blown off, taphonomy once again proves to be the poor man’s CT machine, giving us a great look at the pneumatic spaces inside the vertebra.

EDIT, Oct. 13, 2019 — WHOOPS! That ain’t a cervical. Based on the plates in Madsen (1976), it’s a dead ringer for the second dorsal vertebra.

Allosaurus fragilis cervicodorsal transition - Madsen 1976 plates 14-16

Vertebrae C7 through D3 of Allosaurus fragilis in anterior view, from plates 14-16 in Madsen (1976). Abbreviations: dp, diapophysis; li, interspinous ligament scar; nc, neural canal; ns, neural spine; pp, parapophysis; pr, prezygapophysis.

Reference

Madsen, Jr., J.H. 1976. Allosaurus fragilis: a revised osteology. Utah Geological and Mining Survey Bulletin 109: 1-163.

As Mike noted in the last post, many (all?) of the talks from SVPCA 2018 are up on YouTube. Apparently this has been the case for a long time, maybe most of the past year, and I just didn’t know. But I’m glad I do now, because I can encourage you to take 14 minutes and watch Jessie Atterholt’s talk on air spaces inside the neural canal in birds and other archosaurs:

This will not only be interesting in itself — assuming you are interested in pneumaticity, animals, or just how weird the natural world can be at times — but it will be good homework for the Atterholt and Wedel talk at this year’s SVPCA. That talk, also to be delivered by Jessie, will be on a different weird thing about archosaur neural canals, and one that neither of us have yapped about yet on social media.

Here’s the full rundown of talks by SV-POW!sketeers and affiliates at this year’s SVPCA:

Thursday, September 12

  • 11:00-11:20 – Vicki Wedel, “Validating the use of Dental Cementum Increment Analysis to determine season-at-death in humans and other mammals”
  • 11:20-11:40 – Matt Wedel, “How to make new discoveries in (human) anatomy”

Friday, September 13

  • 10:10-10:30 – Mike Taylor and Matt Wedel, “The past, present and future of Jensen’s Big Three sauropods”
  • 15:00-15:20 – Jessie Atterholt and Matt Wedel, “Neural canal ridges: a novel osteological correlate of post-cranial neurology in dinosaurs”

Presumably most or all of these will become PeerJ Preprints in time, just like Mike’s and my presentations from SVPCA 2017 (link, link) and Jessie’s presentation last year (link). I haven’t heard anything yet about livestreaming or recording of the talks this year — fingers firmly crossed.

Anyway, we look forward to seeing at least some of you at SVPCA or at other points on our trip to England, and to having more stuff to talk about here in the near future. Stay tuned!