We’ve noted many times over the years how inconsistent pneumatic features are in sauropod vertebra. Fossae and formamina vary between individuals of the same species, and along the spinal column, and even between the sides of individual vertebrae. Here’s an example that we touched on in Wedel and Taylor (2013), but which is seen in all its glory here:

Taylor and Wedel (2021: Figure 5). Giraffatitan brancai tail MB.R.5000, part of the mounted skeleton at the Museum für Naturkunde Berlin. Caudal vertebrae 24–26 in left lateral view. While caudal 26 has no pneumatic features, caudal 25 has two distinct pneumatic fossae, likely excavated around two distinct vascular foramina carrying an artery and a vein. Caudal 24 is more shallowly excavated than 25, but may also exhibit two separate fossae.

But bone is usually the least variable material in the vertebrate body. Muscles vary more, nerves more again, and blood vessels most of all. So why are the vertebrae of sauropods so much more variable than other bones?

Our new paper, published today (Taylor and Wedel 2021) proposes an answer! Please read it for the details, but here’s the summary:

  • Early in ontogenly, the blood supply to vertebrae comes from arteries that initially served the spinal cord, penetrating the bone of the neural canal.
  • Later in ontegeny, additional arteries penetrate the centra, leaving vascular foramina (small holes carrying blood vessels).
  • This hand-off does not always run to completion, due to the variability of blood vessels.
  • In extant birds, when pneumatic diverticula enter the bone they do so via vascular foramina, alongside blood vessels.
  • The same was probaby true in sauropods.
  • So in vertebrae that got all their blood supply from vascular foramina in the neural canal, diverticula were unable to enter the centra from the outside.
  • So those centra were never pneumatized from the outside, and no externally visible pneumatic cavities were formed.

Somehow that pretty straightforward argument ended up running to eleven pages. I guess that’s what you get when you reference your thoughts thoroughly, illustrate them in detail, and discuss the implications. But the heart of the paper is that little bullet-list.

Taylor and Wedel (2021: Figure 6). Domestic duck Anas platyrhynchos, dorsal vertebrae 2–7 in left lateral view. Note that the two anteriormost vertebrae (D2 and D3) each have a shallow pneumatic fossa penetrated by numerous small foramina.

(What is the relevance of these duck dorsals? You will need to read the discussion in the paper to find out!)

Our choice of publication venue

The world moves fast. It’s strange to think that only eleven years ago my Brachiosaurus revision (Taylor 2009) was in the Journal of Vertebrate Palaeontology, a journal that now feels very retro. Since then, Matt and I have both published several times in PeerJ, which we love. More recently, we’ve been posting preprints of our papers — and indeed I have three papers stalled in peer-review revisions that are all available as preprints (two Taylor and Wedels and a single sole-authored one). But this time we’re pushing on even further into the Shiny Digital Future.

We’ve published at Qeios. (It’s pronounced “chaos”, but the site doesn’t tell you that; I discovered it on Twitter.) If you’ve not heard of it — I was only very vaguely aware of it myself until this evening — it runs on the same model as the better known F1000 Research, with this very important difference: it’s free. Also, it looks rather slicker.

That model is: publish first, then filter. This is the opposite of the traditional scholarly publishing flow where you filter first — by peer reviewers erecting a series of obstacles to getting your work out — and only after negotiating that course to do get to see your work published. At Qeios, you go right ahead and publish: it’s available right off the bat, but clearly marked as awaiting peer-review:

And then it undergoes review. Who reviews it? Anyone! Ideally, of course, people with some expertise in the relevant fields. We can then post any number of revised versions in response to the reviews — each revision having its own DOI and being fixed and permanent.

How will this work out? We don’t know. It is, in part, an experiment. What will make it work — what will impute credibility to our paper — is good, solid reviews. So if you have any relevant expertise, we do invite you to get over there and write a review.

And finally …

Matt noted that I first sent him the link to the Qeios site at 7:44 pm my time. I think that was the first time he’d heard of it. He and I had plenty of back and forth on where to publish this paper before I pushed on and did it at Qeios. And I tweeted that our paper was available for review at 8:44 — one hour exactly after Matt learned that the venue existed. Now here we are at 12:04 my time, three hours and 20 minutes later, and it’s already been viewed 126 times and downloaded 60 times. I think that’s pretty awesome.


  • Taylor, Michael P. 2009. A re-evaluation of Brachiosaurus altithorax Riggs 1903 (Dinosauria, Sauropoda) and its generic separation from Giraffatitan brancai (Janensch 1914). Journal of Vertebrate Paleontology 29(3):787-806. [PDF]
  • Taylor, Michael P., and Mathew J. Wedel. 2021. Why is vertebral pneumaticity in sauropod dinosaurs so variable? Qeios 1G6J3Q. doi: 10.32388/1G6J3Q [PDF]
  • Wedel, Mathew J., and Michael P. Taylor 2013b. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus. PLOS ONE 8(10):e78213. 14 pages. doi: 10.1371/journal.pone.0078213 [PDF]

If you followed along with the last post in this series, you now have some bird vertebrae to play with. Here are some things to do with them.

1. Learn the parts of the vertebrae, and compare them with those of other animals

Why are we so excited about bird vertebrae around here? Mostly because birds are reasonably long-necked living dinosaurs, and although their vertebrae differ from those of sauropods in relative proportions, all of the same bits are present in roughly the same places. If you know the parts of a bird vertebra and what each one does, you have a solid foundation for inferring the functions of sauropod vertebrae. Here’s a diagram I made for my SVP poster with Kent Sanders way back in 1999. I used an ostrich vertebra here but you should be able to find the same features in a cervical vertebra of just about any bird.

These are both middle cervical vertebrae in right lateral view. A middle cervical vertebra of a big ostrich will be between 3 and 4 inches long (7.5-10 cm), and one from a big brachiosaur like Giraffatitan will be about ten times longer.

I should do a whole post on neck muscles, but for now see this post and this paper.

2. Put the vertebrae in order, and rearticulate them

It is often useful to know where you are in the neck, and the only way to figure that out is to determine the serial position of the vertebrae. Here’s an articulated cervical series of a turkey in left lateral view, from Harvey et al. (1968: pl. 65):

Harvey’s “dorsal spine” is the neural spine or spinous process, and his “ventral spine” is the carotid process. The “alar process” is a sort of bridge of bone connecting the pre- and postzygapophyses; you can see a complete version in C3 in the photo below, and a partial version in C4.

Speaking of that photo, here’s my best attempt at rearticulating the vertebrae from the smoked turkey neck I showed in the previous post, with all of the vertebrae in left dorsolateral view.

These things don’t come with labels and it can take a bit of trial and error to get them all correctly in line. C2 is easy, with its odd articular surface for the atlas and narrow centrum with a ventral keel. Past that, C3 and C4 are usually pretty blocky, the mid-cervicals are long and lean, and then the posterior cervicals really bulk out. Because this neck section had been cut before I got it, some of the vertebrae look a little weird. Somehow I’m missing the front half of C6. The back half of C14 is also gone, presumably still stuck to the bird it went with, and C7 and C12 are both sectioned (this will come in handy later). I’m not 100% certain that I have C9 and C10 in the right order. One handy rule: although the length and neural spine height change in different ways along the column, the vertebrae almost always get wider monotonically from front to back.

And here’s the duck cervical series, in right lateral view. You can see that although the specific form of each vertebra is different from the equivalent vert in a turkey, the same general rules apply regarding change along the column.

Pro tip: I said above that these things don’t come with labels, but you can fix that. Once you have the vertebrae in a satisfactory order, paint a little dot of white-out or gesso on each one, and use a fine-point Sharpie or art pen to write the serial position (bone is porous and the white foundation will keep the ink from possibly making a mess). You may also want to put the vertebrae on a string or a wire to keep them in the correct order, but even so, it’s useful to have the serial position written on each vertebra in case you need to unstring them later.

3. Look at the air spaces

One nice thing about birds is that all of the species that are readily commercially available have pneumatic traces on and in their vertebrae, which are broadly comparable to the pneumatic vertebrae of sauropods.

The dorsal vertebrae of birds are even more obviously similar to those of sauropods than are the cervicals. These dorsal vertebrae of a duck (in left lateral view) show a nice variety of pneumatic features: lateral fossae on the centrum (what in sauropods used to be called “pleurocoels”), both with and without foramina, and complexes of fossae and foramina on the neural arches. Several of the vertebrae have small foramina on the centra that I assume are neurovascular. One of the challenges in working with the skeletal material of small birds is that it becomes very difficult to distinguish small pneumatic foramina and spaces from vascular traces. Although these duck vertebrae have small foramina inside some of the lateral fossae, the centra are mostly filled with trabecular, marrow-filled bone. In this, they are pretty similar to the dorsal vertebrae of Haplocanthosaurus, which have fossae on the neural arches and the upper parts of the centra, but for which the ventral half of each centrum is a brick of non-pneumatic bone. For more on distinguishing pneumatic and vascular traces in vertebrae, see O’Connor (2006) and Wedel (2007).

This turkey cervical, in left posterolateral view, shows some pneumatic features to nice advantage. The lateral pneumatic foramina in bird cervicals are often tucked up inside the cervical rib loops where they can be hard to see and even harder to photograph, but this one is out in the open. Also, the cervicals of this particular turkey have a lot of foramina inside the neural canal. In life these foramina are associated with the supramedullary diverticula, a set of air-filled tubes that occupy part of the neural canal in many birds — see Atterholt and Wedel (2018) for more on this unusual anatomical system. The development of foramina inside the neural canal seems to be pretty variable among individuals. In ostriches I’ve seen individuals in which almost every cervical has foramina inside the canal, and many others with no foramina. For turkeys it’s even more lopsided in my experience; this is the first turkey in which I’ve found really clear pneumatic foramina inside the neural canals. This illustrates one of the most important aspects of pneumaticity: pneumatic foramina and cavities in bones show that air-filled diverticula were present, but the absence of those holes and spaces does not mean that diverticula were absent. Mike and I coined the term “cryptic diverticula” for those that leave no diagnostic traces on the skeleton — for more on that, see the discussion section in Wedel and Taylor (2013b).

Finally, it’s worth taking a look at the air spaces inside the vertebrae. Here’s a view into C12 of the turkey cervical series shown above. The saw cut that sectioned this neck happened to go through the front end of this vertebra, and with a little clean-up the honeycomb of internal spaces is beautifully displayed. If you are working with an intact vertebra, the easiest way to see this for yourself is to get some sandpaper and sand off the front end of the vertebra. It only takes a few minutes and you’ll be less likely to damage the vertebrae or your fingers than if you cut the vertebra with a saw. Similar complexes of small pneumatic cavities are present in the vertebrae of some derived diplodocoids, like Barosaurus (see the lateral view in the middle of this figure), and in most titanosauriforms (for example).

I have one more thing for you to look for in your bird vertebrae, and that will be the subject of the next installment in this series. Stay tuned!


Necks lie, redux

September 1, 2011

In a recent post I showed photos of the trachea in a rhea, running not along the ventral surface of the neck but along the right side. I promised to show that this is not uncommon, that the trachea and esophagus of birds are usually free to slide around under the skin and are not constrained to like along the ventral midline of the neck, as they usually are in mammals. Here goes.

Here’s figure 5 from van der Leeuw et al. (2001): a lateral x-ray of a duck, reaching up just a bit with its head and neck, possibly to get a bite or just look around. Click through for the unlabeled version.

There’s a LOT of stuff going on in this image:

  • As promised, the trachea (blue lines) is taking a very different path to the head than the vertebrae and skeletal muscles.
  • As usual for tetrapods, the neck is extended at the base in the caudal half and flexed at the head in the cranial half.
  • The epaxial (dorsal) muscles at the base of the neck are not tied down to the vertebral column so they are free to bowstring across the U-bend at the base of the neck (black arrow)–this was the point of the figure in the original paper. Although the gross outline of the neck also deviates from the vertebral column on the ventral side near the head, this is caused by the trachea and gullet approaching the pharynx, not because the hypaxial muscles are bowstringed across the curve.
  • As the post title intimates, this neck lies: the cervical vertebrae are significantly more extended than one would expect based on the external appearance of the neck alone. The red line shows the angle of the most strongly retroverted vertebra, which I measure at 48.5 degrees from vertical (41.5 degrees above horizontal)–slightly closer to horizontal than to vertical! We have seen this before, in most mammals and in a couple of small birds (see this post); here we see it even in a reasonably large, long-necked bird.
  • Worse, the gross outline of the neck–what one can see from the outside–lines up with nothing on the inside: the trachea is less curved and the vertebral column is more curved.

Same points again, this time in a chicken in an alert posture (Vidal et al. 1986: fig. 7). Here the most strongly retroverted cervical is 36 degrees from vertical (54 degrees above horizontal).

What’s all this got to do with sauropods?

First, it shows that even in animals with long, slender necks, it’s not enough to show a photo or painting of an extant animal and make assertions about what the cervicals are doing (necks lie, again). It’s even less defensible to make the dual assertions that (a) the gross outline of the neck shows the path of the cervicals and (b) the cervicals are in ONP, all based on a photo or painting of a living animal. The first point can only be established by radiography, and the second by manipulation of the skeleton, either physically or digitally. It may seem like I’m tilting at windmills here, but we’ve seen these very assertions made in conference talks. As always, we’ll follow where the evidence leads, but not until we see some actual evidence.

Second,  I am increasingly haunted by the idea that we are all waaay too influenced, even (maybe especially) subconsciously, by big mammals when we think about sauropods and their necks. Big mammals–like, say, horses and giraffes–have:

  • only 7 cervical vertebrae;
  • lots of big muscles that attach to the thorax and the head and cross the cervical column without attaching to it much or at all;
  • presacral neural spines that max out, height-wise, over the shoulders, creating withers;
  • alert neck postures that are elevated (like all tetrapods) but often short of vertical, with the vertebrae often held more-or-less straight through the middle section of the neck (camels are an obvious exception here).

In contrast, birds have:

  • many cervical vertebrae, from a 12  or so up to 27 or 28;
  • almost no muscles that span from thorax to skull;
  • presacral neural spines that rise monotonically to the synsacrum (except–maybe–in Giraffatitan);
  • alert neck postures that are S-shaped, with the craniocervical joint over or just slightly in front of the cervicodorsal junction.

Which group sauropods had more in common with is left as an exercise for the reader.


  • van der Leeuw, A.H.J., Bout, R.G., and Zweers, G.A. 2001. Evolutionary morphology of the neck system in ratites, fowl, and waterfowl. Netherlands Journal of Zoology 51(2):243-262.
  • Vidal, P.P., Graf, W., and Berthoz, A. 1986. The orientation of the cervical vertebral column in unrestrained awake animals. Experimental Brain Research 61: 549­-559.