Bird vertebra diagrams

January 10, 2014

bird neck note sheet

I made these back in the day. The idea was that you could print them out and have them along while dissecting bird necks, so you could draw on the muscles.

bird neck note sheet - LEFT - all three views

It’s basically one drawing of an ostrich vertebra, morphed in GIMP and stacked to simulate articulation. All of the ones in this post show the vertebrae in left lateral view. If you need right views, flip ’em in GIMP or heck, I think even Windows Explorer will do that for you. The one above has dorsal views in the top row, lateral view in the middle row, and ventral views in the bottom row.

bird neck note sheet - LEFT - double lateral

Here’s a sheet with two rows in lateral view, the idea being that you draw on the more superficial multi-segment muscles on one row, and the deeper single- or two-segment muscles on the other row.

bird neck note sheet - LEFT - 12 cervicals

A version with 12 vertebrae, so you can map out the often complicated patterns of origins and insertions in the really long muscles. How complicated? Well, check out this rhea neck with the M. longus colli dorsalis and M. longus colli ventralis fanned out.

Rhea neck muscles fanned - full

That’s all. Have fun!

Advertisements

This  is the fifth in a series of posts reviewing the Apatosaurus maquette from Sideshow Collectibles. Other posts in the series are:

There are really only a couple of interesting points to discuss for posture: the neck and the feet.

The neck posture is fine. Easy to say, but since I’m one of the “sauropods held their necks erect” guys, it might need some unpacking.

On one hand, animals really do use stereotyped postures, especially for the neck and head (Vidal et al. 1986, Graf et al. 1995, van der Leeuw et al. 2001). The leading hypothesis about why animals do this is that the number of joints and muscle slips involved in the craniocervical system permits an almost limitless array of possible postures, and that having a handful of stereotyped postures cuts down on the amount of neural processing required to keep everything going. That doesn’t mean that animals only use stereotyped postures, just that they do so most of the time, when there’s no need to deviate.

This might work something like the central pattern generators in your nervous system. When you’re walking down the sidewalk thinking about other things or talking with a friend, a lot of the control of your walk cycle is handled by your spinal cord, not your brain. Your brain is providing a direction and a speed, but the individual muscles are being controlled from the spinal cord. Key quote from the Wikipedia article: “As early as 1911, it was recognized, by the experiments of T. Graham Brown, that the basic pattern of stepping can be produced by the spinal cord without the need of descending commands from the cortex.”

But then you see a puddle or some dog doo and have to place your foot just so, and your brain takes over for a bit to coordinate that complex, ad hoc action. After the special circumstance is past, you go back to thinking about whatever and your spinal cord is back in charge of putting one foot in front of the other. This is the biological basis of the proverbial chicken running around with its head cut off: thanks to the spinal cord, the chicken can still run, but without a brain it doesn’t have anywhere to go (I have witnessed this, by the way–one of the numerous benefits to the future biologist of growing up on a farm).

Similarly, if the craniocervical system has a handful of regular postures–alert, feeding, drinking, locomoting, and so on–it lightens the load on the brain, which doesn’t have to figure out how to fire every muscle slip inserting on every cervical vertebra and on the skull to orient the head just so in three-dimensional space. That doesn’t mean that the brain doesn’t occasionally step in and do that, just like it takes over for the spinal cord when you place your feet carefully. But it doesn’t have to do it all the time.

van der Leeuw et al. (2001) took this a step further and showed that birds not only hold their heads and necks in stereotyped postures, they move between stereotyped postures in very predictable ways, and those movement patterns differ among clades (fig. 7 from that paper is above). There is a lot of stuff worth thinking about in that paper, and I highly recommend it, along with Vidal et al. (1986) and Graf et al. (1995), to anyone who is interested in how animals hold their heads and necks, and why.

So, on one hand, its wrong to argue that stereotyped postures are meaningless. But it’s also wrong to infer that animals only use stereotyped postures–a point we were careful to make in Taylor et al. (2009). And it’s especially wrong to infer that paleoartists only show animals doing familiar, usual things–I wrote the last post partly so I could make that point in this one.

For example, I think it would be a mistake to look at Brian Engh’s inflatable Sauroposeidon duo and infer that he accepts a raised alert neck posture for sauropods. He might or might not–the point is that the sauropods in the picture aren’t doing alert, they’re doing “I’m going to make myself maximally impressive so I can save myself the wear and tear of kicking this guy’s arse”. The only way the posture part of that painting can be inaccurate is if you think Sauroposeidon was physically incapable of raising its neck that high, even briefly (the inflatable throat sacs and vibrant colors obviously involve another level of speculation).

Similarly, the Sideshow Apatosaurus has its neck in the near-horizontal pose that is more or less standard for depictions of diplodocids (at least prior to 2009, and not without periodic dissenters). But it doesn’t come with a certificate that says that it is in an alert posture or that it couldn’t raise its neck higher–and even if it did, we would be free to ignore it. Would it have been cool to see a more erect-necked apatosaur? Sure, but that’s not a new idea, either, and there are other restorations out there that do that, and in putting this apatosaur in any one particular pose the artists were forced to exclude an almost limitless array of alternatives, and they had to do something. (Also, more practically, a more erect neck would have meant a larger box and heftier shipping charges.)

So the neck posture is fine. Cool, even, in that the slight ribbing along the neck created by the big cervical ribs (previously discussed here) gives you a sense of how the posture is achieved. Visible anatomy is fun to look at, which I suspect is one of the drivers behind shrink-wrapped dinosaur syndrome–even though it’s usually incorrect, and this maquette doesn’t suffer from it anyway.

Next item: the famous–or perhaps infamous–flipped-back forefoot. I have no idea who first introduced this in skeletal reconstructions and life restorations of sauropods, but it was certainly popularized by Greg Paul. It’s a pretty straightforward idea: elephants do this, why not sauropods?

Turns out there are good reasons to suspect that sauropods couldn’t do this–and also good reasons to think that they could. This already got some air-time in the comments thread on the previous review post, and I’m going to start here by just copying and pasting the relevant bits from that discussion, so you can see four sauropod paleobiologists politely disagreeing about it. I interspersed the images where they’re appropriate, not because there were any in the original thread.

Mike Taylor: the GSP-compliant strong flexion of the wrist always look wrong to me. Yes, I know elephants do this — see Muybridge’s sequence [above] — but as John H. keeps reminding us all, sauropods were not elephants, and one might think that in a clade optimsied for size above all else, wrist flexibility would not be retained without a very good reason.

Adam Yates: Yes I agree with Mike here, the Paulian, elephant-mimicking hyperflexion of the wrist is something that bugs me. Sauropod wrist elements are rather simple flat structures that show no special adaptation to achieve this degree of flexion. [Lourina sauropod right manus below, borrowed from here.]

Heinrich Mallison: Hm, I am not too sure what I think of wrist flexion. Sure it looks odd, but if you think it through the very reasons elephant have it is likely true in sauropods. And given the huge amount of cartilage mossing on the bones AND the missing (thus shape unknown) carpals I can well imagine that sauropods were capable of large excursions in the wrist.

 Mike: What are those reasons?

Heinrich: Mike, long humeri, very straight posture – try getting up from resting with weak flexion at the wrist. Or clearing an obstacle when walking. I can’t say too much, since this afternoon this has become a paper-to-be.

Mike: OK, Heinrich, but the Muybridge photos (and many others, including one on John H.’s homepage) show that elephants habitually flex the wrist in normal locomotion, not just when gwetting up from resting or when avoiding obstacles. Why?

The interesting thing here is that this is evidence of how flawed our (or maybe just my) intuition is: looking at an elephant skeleton, I don’t think I would ever have guessed that it would walk that way. (That said, the sauropod wrist skeleton does look much less flexible than that of the elephant.)

Matt: (why elephants flex their wrists) Possibly for simple energetics. If the limb is not to hit the ground during the swing phase, it has to be shortened relative to the stance limb. So it has to be bent. Bending the limb at the more proximal joints means lifting more weight against gravity. Flexing the wrist more might be a way to flex the elbow less.

(sauropod wrists look less flexible) Right, but from the texture of the ends of the bones we already suspect that sauropods had thicker articular cartilage caps than do mammals. And remember the Dread Olecranon of Kentrosaurus (i.e., Mallison 2010:fig. 3).

Mike: No doubt, but that doesn’t change the fact that elephant wrists have about half a dozen more discrete segments.

Matt: Most of which are very tightly bound together. The major flexion happens between the radius and ulna, on one hand, and the carpal block on the other, just as in humans. Elephants may have more mobile wrists than sauropods did–although that is far from demonstrated–but if so, it’s nothing to do with the number of bony elements. [Loxodonta skeleton below from Wikipedia, discovered here, arrow added by me.]

(Aside: check out the hump-backed profile of the Asian Elephas skeleton shown previously with the sway-backed profile of the African Loxodonta just above–even though the thoracic vertebrae have similar, gentle dorsal arches in both mounts. I remember learning about this from the wonderful How to Draw Animals, by Jack Hamm, when I was about 10. That book has loads of great mammal anatomy, and is happily still in print.)

And that’s as far as the discussion has gotten. The Dread Olecranon of Kentrosaurus is something Heinrich pointed out in the second of his excellent Plateosaurus papers (Mallison 2010: fig. 3).

Heinrich’s thoughts on articular cartilage in dinosaurs are well worth reading, so once again I’m going to quote extensively (Mallison 2010: p. 439):

Cartilaginous tissues are rarely preserved on fossils, so the thickness of cartilage caps in dinosaurs is unclear. Often, it is claimed that even large dinosaurs had only thin layers of articular cartilage, as seen in extant large mammals, because layers proportional to extant birds would have been too thick to be effectively supplied with nutrients from the synovial fluid. This argument is fallacious, because it assumes that a thick cartilage cap on a dinosaur long bone would have the same internal composition as the thin cap on a mammalian long bone. Mammals have a thin layer of hyaline cartilage only, but in birds the structure is more complex, with the hyaline cartilage underlain by thicker fibrous cartilage pervaded by numerous blood vessels (Graf et al. 1993: 114, fig. 2), so that nutrient transport is effected through blood vessels, not diffusion. This tissue can be scaled up to a thickness of several centimeters without problems.

An impressive example for the size of cartilaginous structures in dinosaurs is the olecranon process in the stegosaur Kentrosaurus aethiopicus Hennig, 1915. In the original description a left ulna (MB.R.4800.33, field number St 461) is figured (Hennig 1915: fig. 5) that shows a large proximal process. However, other ulnae of the same species lack this process, and are thus far less distinct from other dinosaurian ulnae (Fig. 3B, C). The process on MB.R.4800.33 and other parts of its surface have a surface texture that can also be found on other bones of the same individual, and may indicate some form of hyperostosis or another condition that leads to ossification of cartilaginous tissues. Fig. 3B–D compares MB.R.4800.33 and two other ulnae of K. aethiopicus from the IFGT skeletal mount. It is immediately obvious that the normally not fossilized cartilaginous process has a significant influence on the ability to hyperextend the elbow, because it forms a stop to extension. Similarly large cartilaginous structures may have been present on a plethora of bones in any number of dinosaur taxa, so that range of motion analyses like the one presented here are at best cautious approximations.

One of the crucial points to take away from all of this is that thick cartilage caps did not only expand or only limit the ranges of motions of different joints. The mistake is to think that soft tissues always do one or the other. The big olecranon in Kentrosaurus probably limited the ROM of the elbow, by banging into the humerus in extension. In contrast, thick articular cartilage at the wrist probably expanded the ROM and may have allowed the strong wrist flexion that some artists have restored for sauropods. I’m not arguing that it must have done so, just that I don’t think we can rule out the possibility that it may have. And so the flipped-back wrist in the Sideshow Apatosaurus does not bother me–but not everyone is convinced. Welcome to science!

I can’t finish without quoting a comment Mike left on Matt Bonnan’s blog a little over a year ago:

Ever since I saw Jensen’s (1987) paper about how mammals are so much better than dinosaurs because their limb-bones articulate properly, I’ve been fuming on and off about this — the notion that the clearly unfinished ends we see are what was operating in life. No.

This is a pretty fair summary of Jensen’s position. Of course, thanks to Heinrich, now we know why dinosaurs had such crap distal limb articulations: they weren’t mammals (part 1part 2part 3).

Finally, interest in articular cartilage is booming right now, as Mike blogged about here. In addition to the Dread Olecranon of Kentrosaurus, see the Dread Elbow Condyle-Thingy of Alligator from Casey Holliday’s 2001 SVP talk, and of course the culmination of that project in Holliday et al. (2010), and, for a more optimistic take on inferring the shapes of articular surfaces from bare bones, read Bonnan et al. (2010).

Next time: texture and color.

References

This is the third in a series of posts on the Apatosaurus maquette produced by Sideshow Collectibles. The rest of the series:

It is probably no surprise, given my proclivities, that I have more to say about the neck than about anything else. So unless I develop an abnormal curiosity about and mastery of, say, sauropod foot anatomy in the next few days, this will be the longest post in the series.

As with the head, the neck of the Apatosaurus maquette illustrates a lot of interesting anatomy. Some of this is unique to Apatosaurus and some of it is characteristic of sauropods in general. I’ll start with the general and move toward the specific.

As we’ve discussed before, the necks of most sauropods were not round in cross section (see here and here). The cervical ribs stuck out far enough ventrolaterally that even with a lot of muscle, the neck would have been fairly flat across the ventral surface, and in many taxa it would have been wider ventrally than dorsally.

The non-circular cross section would have been exaggerated in Apatosaurus, which had simply ridiculous cervical ribs (photo above is from this post). The widely bifurcated neural spines would also have created a broad and probably flattish surface on the dorsal aspect of the neck. The extreme width of the vertebrae and the cervical ribs created a very broad neck base. As in Camarasaurus, the base of the neck was a substantial fraction of the width of the thorax (discussed here). Consequently, the cervico-thoracic junction probably appeared more abrupt in narrow-necked taxa like Diplodocus and Giraffatitan, and more smoothly blended in Apatosaurus and Camarasaurus.

All of these features–the non-circular cross-section, the flattish dorsal and ventral surfaces, the wide neck base blending smoothly into the thorax–are captured in the Apatosaurus maquette.

The ventrolateral ‘corners’ of the neck have a ribbed appearance created by, well, ribs. Cervical ribs, that is, and big ones. In contrast to most other sauropods, which had long, overlapping cervical ribs, diplodocoids had short cervical ribs that did not overlap. But in Apatosaurus they were immense, proportionally larger than in any other sauropod and probably larger than in any other tetrapod. What Apatosaurus was doing with those immense ribs is beyond me. Some people have suggested combat, akin to the necking behavior of giraffes, and although I haven’t seen any evidence to support that hypothesis over others, neither does it strike me as far-fetched (an important nuance: giraffes use their heads as clubs, clearly not an option for the small-headed and fragile-skulled sauropods). Whatever the reason, the cervical ribs of Apatosaurus were amazingly large, and may well have been visible from the outside.

Mounted skeleton of Apatosaurus louisae in the Carnegie Museum, from Wikipedia.

Now this brings me to a something that, although not universal, has at least become fairly common in paleoart. This is the tendency by some artists to render (in 2D, 3D, or virtually) sauropods with dished-in areas along the neck, between the bony loops where the cervical ribs fuse to the centra. I am going to be as diplomatic as I can, since some of the people who have used this style of restoration are good friends of mine. But it’s a fine example of shrink-wrapped dinosaur syndrome, and it simply cannot be correct.

Adjacent cervical ribs loops in sauropods would have been spanned by intertransversarii muscles, as they are in all extant tetrapods. And outside of those single-segment muscles were long belts of flexor colli lateralis and cervicalis ascendens, which are also anchored by the cervical rib loops. All of these muscles are present in birds, and only vary in their degree of development in different parts of the neck and in different taxa. The spaces between adjacent cervical rib loops are not only not dished-in, they actually bulge outward, as in the turkey neck above.

And we’re still not done; running up through the cervical rib loops, underneath all of those muscles, were pneumatic diverticula. Not just any diverticula, but the big lateral diverticula that carried the air up the neck from the cervical air sacs at the base of the neck to the vertebrae near the head end (diverticula are reconstructed here in a cervical vertebra of Brachiosaurus, from Wedel 2005: fig. 7.2). Now, it’s unlikely that the diverticula exerted any outward pressure on the lateral neck muscles, but they were still there, occupying space (except when the muscles bulged inward and impinged on them during contraction), and with the muscles they would have prevented the neck from having visible indentations between the cervical rib loops of adjacent vertebrae.

Okay, so sauropod necks shouldn’t be dished in. But might the cervical ribs have stuck out? It might seem like the same question, only seen from the other side, but it’s not. We’ve established that adjacent cervical rib loops supported bands of single-segment muscles that spanned from one vertebra to the next, and longer, multi-segment muscles that crossed many vertebrae. But could the bony eminences of the cervical ribs have projected outward, through the muscle, and made bumps visible through the skin? The idea has some precedent in the literature; in his 1988 paper on Giraffatitan, Greg Paul (p. 9) argued that,

The intensely pneumatic and very bird-like neck vertebrae of sauropods were much lighter in life than they look as mineralized fossils, and the skulls they supported were small. This suggests that the cervical musculature was also light and rather bird-like, just sufficient to properly operate the head-neck system. The bulge of each neck vertebra was probably visible in life, as is the case in large ground birds, camels, and giraffes.

Paul has illustrated this in various iterations of his Tendaguru Giraffatitan scene; the one below is from The Princeton Field Guide to Dinosaurs (Paul 2010) and is borrowed from the Princeton University Press blog.

There is much to discuss here. First, I have no qualms about being able to see individual vertebrae in the necks of camels and giraffes, and it’s not hard to find photos that show these. It makes sense: these are stinkin’ mammals with the usual seven cervical vertebrae, so the verts have to be longer, proportionally, and bend farther at each joint than in other long-necked animals. I’m more skeptical about the claim that individual vertebrae can be seen in the necks of large ground birds. I’ve dissected the necks of an ostrich, an emu, and a rhea, and it seems to me that the neck muscles are just too thick to allow the individual vertebrae to be picked out. In a flamingo, certainly–see the sharp bends in the cranial half of the neck in the photo below–but flamingos have freakishly skinny necks even for birds, and their cervicals are proportionally much longer, relative to their width, than those of even ostriches.

What about sauropods? As discussed in this post, sauropod cervicals were almost certainly proportionally closer to the surface of the neck than in birds, which would tend to make them more likely to be visible as bulges. However, the long bony rods of the cervical ribs in most sauropods would have kept the ventral profile of the neck fairly smooth. The ossified cervical ribs of sauropods ran in bundles, just like the unossified hypaxial tendons in birds (that’s Vanessa Graff dissecting the neck of Rhea americana below), and whereas the latter are free to bend sharply around the ventral prominences of each vertebra, the former were probably not.

All of which applies to sauropods with long, overlapping cervical ribs, which is most of them. But as mentioned above, diplodocoids had short cervical ribs. Presumably they had long hypaxial tendons that looked very much like the cervical ribs of sauropods but just weren’t ossified. Whether the vertebrae could have bent enough at each segment to create bulges, and whether the overlying muscles were thin enough to allow those bends to be seen, are difficult questions. No-one actually knows how much muscle there was on sauropod necks, not even within a factor of two.  There has been no realistic attempt, even, to publish on this. Published works on sauropod neck muscles (Wedel and Sanders 2002, Schwarz et al. 2007) have focused on their topology, not their cross-sectional area or bulk.

But then there’s Apatosaurus (AMNH mount shown here). If any sauropod had a chance of having its cervical vertebrae visible from the outside, surely it was Apatosaurus. And in fact I am not opposed to the idea. The cervical ribs of Apatosaurus are unusual not only in being large and robust, but also in curving dorsally toward their tips. If one accepts that the cervical ribs of sauropods are ossified hypaxial tendons–which seems almost unarguable, given that the cervical ribs in both crocs and birds anchor converging V-shaped wedges of muscle–then the ossified portion of each cervical rib must point back along the direction taken by the unossified portion of the tendon. In which case, the upwardly-curving cervical ribs in Apatosaurus suggest that the muscles inserting on them were doing so at least partially from above. So maybe the most ventrolateral portion of each rib did stick out enough to make an externally visible bulge.

Maybe. Many Apatosaurus cervical ribs also have bony bumps at their ventrolateral margins–the ‘ventrolateral processes’ or VLPs illustrated by Wedel and Sander (2002: fig. 3). If these processes anchored neck muscles, as seems likely, then even the immense cervical ribs of Apatosaurus might have been jacketed in enough muscle to prevent them from showing through on the outside.

Still. It’s Apatosaurus. It’s simply a ridiculous animal–a sauropod among sauropods. If this were a model of Mamenchisaurus and it had visible bulges for the cervical rib loops, I’d be deeply skeptical. For Apatosaurus, it’s at least plausible.

Because the cervical ribs are visible in the maquette as distinct bulges, it’s possible to count the cervical vertebrae. Apatosaurus has 15 cervicals, and that seems about right for the maquette. The neck bumps reveal 11 cervicals, but they don’t run up all the way to the head. This is realistic: the most anterior cervicals anchored muscles that supported and moved the head, and these overlie the segmental muscles and cervical ribs in extant tetrapods. The most anterior part of the neck in the maquette, with no cervical rib bumps, looks about the right length to contain C1-C3. Plus the 11 vertebrae visible from their bumps, that makes 14 cervicals, and the 15th was probably buried in the anterior body wall.

One last thing: because the cervical ribs are huge, the neck of Apatosaurus was fat. To the point that the head looks almost comically tiny, even though it’s about the right size for a sauropod head. I first got a visceral appreciation for this when I was making my own skeletal reconstruction of Apatosaurus, for a project that eventually evaporated into limbo. Once you draw an outline of flesh around the vertebrae, the weirdness of the massive neck of Apatosaurus is thrown into stark relief. Apatosaurus is robust all over, but even on such a massive animal the neck seems anomalous. I don’t know what Apatosaurus was doing with its neck, but it’s hard not to think that it must have been doing something. Anyway, I bring this up because the maquette captures the neck-fatness very well. So much so that when I sit back from the computer and my eyes roam around the office and fall on the maquette, I can’t help thinking, for the thousandth time, “Damn, that’s weird.”

In sum, the neck of the Sideshow Apatosaurus maquette gets the non-circular cross-section right, appears to have the correct number of cervical vertebrae, and looks weirdly fat, which turns out to be just right for Apatosaurus. The bumps for the individual vertebrae are plausible, and the maquette correctly avoids the dished-in, emaciated appearance–cocaine chic for sauropods–that has become popular in recent years. It manages to be eye-catching and even mildly disturbing, even for a jaded sauropodologist like yours truly, in that it confronts me with the essential weirdness of sauropods in general, and of Apatosaurus in particular. These are all very good things.

Next time: as much of the rest of the body as I can fit into one post (all of it, it turned out).

References

Okay, special dissection post, coming to you live from the Symposium  of Vertebrate Palaeontology and Comparative Anatomy in Lyme Regis, on the Jurassic coast of England, well past my bedtime. First, check out this comment from Neil and see the linked image of some neck muscles in the anhinga. Here’s a small version I’m swiping. There are a couple of short, single-segment muscles shown, but the big long ones in this image are longus colli ventralis (on the ‘front’ or ‘bottom’ of the neck) and longus colli dorsalis (on the ‘back’ or ‘top’).

Now, grok these photos of the same dorsal muscle. Or muscle group, if you prefer. Note that in all cases shown here and in the link–anhinga, rhea, and turkey–the muscle inserts on the anterior cervical vertebrae, and not on the skull.

In Rhea:

In Meleagris (turkey):

The rhea was dissected by Vanessa back at Western a couple of weeks ago, the turkey by me on Mike’s dining room table on Monday. Full story to follow…at some point.

In the meantime, go buy your own turkey and cut up its neck. It’s cheap and you’ll learn a ton.

The work continues

August 27, 2011

Not always solemnly.

Wedel’s Theorem:

freezer full of interesting dead animals + great anatomy student who actually wants to get up on Saturday morning and dissect = happiness

The rhea has been the gift that keeps on giving. Saturday was my fourth session with some part of this bird, going back to 2006 (previous posts are here, here, and here). The first two sessions were just about reducing the bird to its component parts, and the last session was all about midline structures.

The goal for the neck is to dissect down to the vertebrae and document everything along the way–muscles, tendons, fascia, blood vessels, and especially diverticula. In the past I have been pessimistic about the chances of seeing diverticula without having them injected with latex or resin or something. But this bird is changing my mind, as we saw in a previous post and as you can see below.

The goal for Vanessa is to grok all of this anatomy, and hopefully make some publishable observations along the way. She has a chance to do something that I think is rather rare for a sauropod paleobiologist, which is to get a firm, dissection-based grounding in bird and croc anatomy before she first sets foot in a museum collection to play with sauropod bones.

That sounds awesome, and probably will be awesome, but before there can be any awesomeness, the fascia has to be picked off the neck. And by ‘picked’ I mean ‘actually cut away, millimeter by arduous millimeter’. It wasn’t that bad everywhere–the fascia over the long dorsal muscles came off very easily. But the lateral neck muscles were actually originating, in part, from the inner surface of the fascia. That’s not unheard of, it happens in the human forearm and leg all the time, but I’ve never seen it as consistently as in this rhea. So picking fascia took a loooong time–that’s what Vanessa is doing in the photo at top.

Once the fascia was off, Vanessa started parting out the long tendons of the hypaxial muscles in the left half of the neck. Meanwhile, I started stripping fascia from the right half. I had forgotten that the right half of the neck still had the trachea and esophagus adhered to the side. That probably sounds weird, given that our trachea and esophagus–and those of most mammals–run right down the middle of our necks and aren’t free to move around much. In birds, they’re more free-floating and can drift around between the skin and the vertebral muscles, sometimes even ending up dorsal to the  vertebral column–there’s a great x-ray of a duck in a  2001 paper that shows this, which I’ll have to blog sometime.

Anyway, when I cut the fascia to pull back the trachea and esophagus, I found that they were separated from the underlying tissues by a dense network of pneumatic diverticula winding through the fascia.

I had heard, anecdotally, of networks of diverticula described as looking like bubble wrap. I can now confirm that is true, for at least some networks. What was especially cool about these is that they were occupying space that would be filled with adipose or other loose connective tissue in a mammal, which illustrates the point that pneumatic epithelium seems to replace many kinds of connective tissue, not just bone–something Pat O’Connor has talked about, and which I also briefly discussed in this post.

I should mention that there was no connection between these diverticula and the trachea, as there is between the subcutaneous throat sac and the trachea in the emu (story and pictures here).

While I was geeking out on diverticula, Vanessa was methodically separating the long hypaxial muscles, which looked pretty cool all fanned out.

And that’s all we had time for on Saturday. But we’re cutting again soon, so more pictures should be along shortly.

When you last saw this rhea neck, I was squeezing a thin, unpleasant fluid out of its esophagus. Previous rhea dissection posts are here and here; you may also be interested in my ratite clearing house post.

We did that dissection back in 2006. Since then I finished my dissertation, got a tenure-track job, and moved twice. The rhea neck followed me, living in a succession of freezers until last spring.

Last spring I thawed it out, straightened it (it had been coiled up in a gallon ziploc), refroze it, and had it cut in half sagittally with a bandsaw. I did all of this for a project that is not yet ready to see the light of day, but there’s a ton of cool morphology here that I am at liberty to discuss, so let’s get on with it.

Throughout the post, click on the images for full resolution, unlabeled versions.

In the image above, you’ll notice that the saw cut was just slightly to the left of the midline, so that almost the entire spinal cord was left in the right half of the neck (the one toward the top of the image; the left half, below, is upside down, i.e. ventral is towards the top of the picture). The spinal cord is the prominent yell0w-white stripe running down the middle of the hemisectioned neck. It’s a useful landmark because it stands out so well. Dorsal to it are the neural arches, spines*, and zygapophyses of the vertebrae, and epaxial muscles; ventral to it are the vertebral centra and the hypaxial muscles.

* If you want to call them that–some of them are barely there!

Here’s the large supraspinous ligament (lig. elasticum interspinale), which is similar to the nuchal ligament of mammals but independently derived. Compare to the nuchal ligament of a horse (image borrowed from here):

Note how the actual profile of the neck is vastly different from what you’d suspect based on the skeleton alone. This is one of the reasons that necks lie. For more on the supraspinous ligament in rheas and its implications for sauropods, see Tsuihiji (2004) and Schwarz et al. (2007).

Birds also have very large interspinous ligaments (lig. elasticum interlaminare), each of which connects the neural spines of two adjacent vertebrae. In the above photo, the blunt probe is passing under (= lateral to) the unpaired, midline interspinous ligament. Rheas are unusual among birds in having such a large supraspinous ligament, and you can see that this interspinous ligament is almost as big. If you tear down the neck of a chicken or turkey, you will find huge interspinous ligaments, and the supraspinous ligament will be tiny if you can identify it at all.

Here’s something I don’t think we’ve ever shown before here on SV-POW!: a photograph of an actual pneumatic diverticulum. That’s the dark hole in the middle of the photo. You can see that we’re in the left half of the neck, lateral to the spinal cord, almost to the postzygapophysis, the articular surface of which is more lateral still (“below” or “deep to” the surface you see exposed in this cut). Usually at each intervertebral joint there is a connection between the lateral pneumatic diverticula that run up the side of the cervical column and pass through the cervical rib loops and the supramedullary diverticula that lie dorsal to the spinal cord inside the neural canal. That connecting diverticulum is the one exposed here.

NB: diverticulum is singular, diverticula is plural. There are no diverticulae or, heaven forbid, diverticuli, although these terms sometimes crop up in the technical literature, erroneously. (I hesitate to point this out, not because it’s not important, but because I’ll be lucky if I didn’t screw up a Latin term elsewhere in the post!)

Here are pneumatic diverticula in a transverse CT section of an ostrich neck (Wedel 2007b: fig. 6; compare to Wedel 2003: fig. 2, another slice from the same neck). In this view, bone is white, muscles and other soft tissues are gray, and air spaces are black. A, lateral diverticula running alongside the vertebral centra. B, air spaces inside the bone. C, supramedullary airways above the spinal cord. This section is close to the posterior end of a vertebra; the flat-bottomed wing-like processes sticking out to either side are the anterior portions of the postzygapophyses. If the slice was a few mm more posterior, we would see the prezygapophyses of the preceding vertebra in contact with them. Also, the vertical bars of bone connecting the centrum to the postzygs would pinch out, and we’d see the diverticula connecting the lateral (A) and supramedullary (C) airways–that’s the diverticulum revealed in the photo two images up.

Here’s another cool section showing a diverticulum and some muscles. Note the short interspinous muscles, which connect the neural spines of adjacent vertebrae. The probe indicates another open diverticulum, and the very tip of the probe is under one of the very thin layers of epithelium that line the diverticula. You can see that this diverticulum lies on the dorsal surface of the vertebra, posterior to the prezygapophysis and anterior to the neural spine. This supravertebral diverticulum is near and dear to my heart, because I have published an image of its traces before.

Lots going on in this photo (remember that you can click for an unlabeled version). This is a middle cervical vertebra of an emu, in anterodorsal view, with anterior towards the bottom of the picture. Bonus geek points if you recognized it as the basis for Text-fig. 9 in Wedel (2007a). I published this photo in that paper because it so nicely illustrates how variable the skeletal traces of pneumaticity can be, even from left to right in a single bone. On the right side of the photo (left side of the vertebra), the bone resorption adjacent to the supravertebral diverticulum produced a pneuamtic fossa, but one without distinct bony margins or a pneumatic foramen. On the other side, the fossa contains a pneumatic foramen which communicates with the internal air spaces, but the fossa is otherwise identical. Fossae like the one on the right are a real pain in the fossil record, because they might be pneumatic, but then again they might not be; such shallow, indistinct fossae can house other soft tissues, including cartilage and fat. This is what I was talking about when I wrote (Wedel 2009: p. 624):

If progressively more basal taxa are examined in the quest to find the origin of PSP [postcranial skeletal pneumaticity], the problem is not that evidence of PSP disappears entirely. It is that the shallow, unbounded fossae of basal dinosaurs are no longer diagnostic for pneumaticity.

For more on that problem, see Wedel (2007a) and the post, “X-Men Origins: Pneumaticity”.

The other labelled bits in the above photo are all muscle attachment points, and you may find Wedel and Sanders (2002), especially Fig. 2, a useful reference for the rest of the post. The dorsal tubercles, or epipophyses, are rugosities dorsal to the postzygapophyses that anchor most of the long, multi-segment epaxial muscles, which in birds are the M. longus colli dorsalis, which originates on the anterior faces of the neural spines, and M. ascendens cervicalis, which originates on the cervical rib loops. The crista transvers0-obliqua is a low, bony crest connecting each dorsal tubercle to the neural spine; it corresponds to the spino-postzygapophyseal lamina (SPOL) of sauropods (see Tutorial 4: Laminae!), and anchors the Mm. intercristales, a group of short muscles that span the cristae of adjacent vertebrae, like the Mm. interspinales only more lateral.

The carotid tubercles serve as points of origin for the M. longus colli ventralis, one of the largest and longest of the multi-segment hypaxial muscles; they have no obvious homolog or analog in sauropods. The lack of this feature might indicate that the hypaxial muscles were less of a big deal in sauropods, for whom lifting the neck was presumably a bigger problem than lowering it. Alternatively, the M. longus colli ventralis of sauropods might have attached to the medial sides of the parapophyses and the capitula of the cervical ribs, which tended to be larger and more ventrally-directed than in basal sauropodomorphs and theropods.

The unlabeled red arrows mark the lateral tubercles and crests of the cervical rib loop, to which we will return momentarily.

Here you can see a big bundle of long epaxial muscles, including both the M. longus colli dorsalis and M. ascendens cervicalis, inserting on the left dorsal tubercle of the vertebra on the right.  Note that the cut here is quite a bit lateral of the midline, and actually goes through the lateral wall of the neural canal in the vertebra on the right (that vert is the fifth back from the front of the section of neck featured in this post, which is incomplete). That is why you see the big, multi-segment muscles here, and not the shorter, single-segment muscles, which lie closer to the midline.

Here are some more muscle attachment points in a bird vertebra (a turkey this time, courtesy of Mike). The lateral crests and tubercles (tubecula ansae and cristae laterales, if you’re keeping track of the Latin) are the same bony features indicated by the red arrows in the photo of the emu vertebra up above. They anchor both the long M. ascendens cervicalis, which inserts on the dorsal tubercles of more anterior vertebrae, and the short Mm. intertransversarii, which span the cervical rib loops of adjacent vertebrae. Sauropods usually have at least small rugosities on their diapophyses and the tubercula of their cervical ribs (which articulate with the diapophyses) that probably anchored homologous muscles.

Here’s a dorsal tubercle above the postzyg on the neural arch of a juvenile Apatosaurus (cervical 6 of CM 555, shown in right lateral view). Notice that the spinopostzygapophyseal lamina (SPOL) and postzygodiapophyseal lamina (PODL) actually converge on the dorsal tubercle rather than on the postzyg. This is pretty common, and makes good mechanical sense.

Dorsal tubercles again, this time on the world’s most wonderful fossil, cervical 8 of the HM SII specimen of Giraffatitan brancai, in the collections of the Humbolt museum in Berlin. While you’re here, check out the pneumato-riffic sculpting on the lateral faces of the neural arch and spine, and the very rugose texture on the tip of the neural spine, SPOLs, and dorsal tubercles. In fact, compare the numerous pocket-like external fossae on this vertebra with the internal air cells exposed in the cross-sectioned rhea neck. I have argued here before that sauropod cervical vertebrae are pretty similar to those of birds; the main differences are that the cervical rib loops are proportionally much smaller in sauropods, and sauropod vertebrae mostly wore their pneumaticity on the outside.

Farther anteriorly in the neck–the three vertebrae pictured here are the third, fourth, and fifth (from right to left) in this partial neck–and somewhat closer to the midline. Now you can see some short epaxial muscles, probably Mm. intercristales and Mm. interspinales (the two groups grade into each other and are often not distinct), spanning adjacent vertebrae. As in several previous photos, the supravertebral diverticulum is visible, as well as the communicating diverticulum that connects the lateral diverticula to the supramedullary airways. I forgot to label them, but ventral to the centra you can see long, light-colored streaks running through the hypaxial muscles. These are the tendons of the M. longus colli ventralis, and in some of the previous photos you can see them running all the way to their origination points on the carotid tubercles. These extend posteriorly from the short cervical ribs of birds, and are homologous with the long cervical ribs of sauropods.

That’s all I have for this time. If you’d like to see all of this stuff for yourself, turkey necks are cheap and big enough to be easy to work with. Geese are good, too. You can see all the same bits in a chicken or a duck, it’s just harder because everything is smaller (if you’re a real glutton for punishment, try a Cornish game hen).

When I first started working on sauropods, their cervical vertebrae made no sense to me. They were just piles of seemingly random osteology. The first time I dissected a bird neck was an epiphany; ever since then, it is hard for me to look at sauropod vertebrae and not see them clad in the diverticula and muscles that shaped their morphology. Go have fun.

References