FIGURE 7.1. Pneumatic features in dorsal vertebrae of Barapasaurus (A–D), Camarasaurus (E–G), Diplodocus (H–J), and Saltasaurus (K–N). Anterior is to the left; different elements are not to scale. A, A posterior dorsal vertebra of Barapasaurus. The opening of the neural cavity is under the transverse process. B, A midsagittal section through a middorsal vertebra of Barapasaurus showing the neural cavity above the neural canal. C, A transverse section through the posterior dorsal shown in A (position 1). In this vertebra, the neural cavities on either side are separated by a narrow median septum and do not communicate with the neural canal. The centrum bears large, shallow fossae. D, A transverse section through the middorsal shown in B. The neural cavity opens to either side beneath the transverse processes. No bony structures separate the neural cavity from the neural canal. The fossae on the centrum are smaller and deeper than in the previous example. (A–D redrawn from Jain et al. 1979:pl. 101, 102.) E, An anterior dorsal vertebra of Camarasaurus. F, A transverse section through the centrum (E, position 1) showing the large camerae that occupy most of the volume of the centrum. G, a horizontal section (E, position 2). (E–G redrawn from Ostrom and McIntosh 1966:pl. 24.) H, A posterior dorsal vertebra of Diplodocus. (Modified from Gilmore 1932:fig. 2.) I, Transverse sections through the neural spines of other Diplodocus dorsals (similar to H, position 1). The neural spine has no body or central corpus of bone for most of its length. Instead it is composed of intersecting bony laminae. This form of construction is typical for the presacral neural spines of most sauropods outside the clade Somphospondyli. (Modified from Osborn 1899:fig. 4.) J, A horizontal section through a generalized Diplodocus dorsal (similar to H, position 2). This diagram is based on several broken elements and is not intended to represent a specific specimen. The large camerae in the midcentrum connect to several smaller chambers at either end. K, A transverse section through the top of the neural spine of an anterior dorsal vertebra of Saltasaurus (L, position 1). Compare the internal pneumatic chambers in the neural spine of Saltasaurus with the external fossae in the neural spine of Diplodocus shown in J. L, An anterior dorsal vertebra of Saltasaurus. M, A transverse section through the centrum (L, position 2). N, A horizontal section (L, position 3). In most members of the clade Somphospondyli the neural spines and centra are filled with small camellae. (K–N modified from Powell 1992:fig. 16.) [Figure from Wedel 2005.]

Here’s figure 1 from my 2005 book chapter. I tried to cram as much pneumatic sauropod vertebra morphology into one figure as I could. All of the diagrams are traced from pre-existing published images except the horizontal section of the Diplodocus dorsal in J, which is a sort of generalized cross-section that I based on broken centra of camerate vertebrae from several taxa (like the ones shown in this post). One thing that strikes me about this figure, and about most of the CT and other cross-sections that I’ve published or used over the years (example), is that they’re more or less bilaterally symmetrical. 

We’ve talked about asymmetrical vertebrae before, actually going back to the very first post in Xenoposeidon week, when this blog was only a month and a half old. But not as much as I thought. Given how much space asymmetry takes up in my brain, it’s actually weird how little we’ve discussed it.

The fourth sacral centrum of Haplocanthosaurus CM 879, in left and right lateral view (on the left and right, respectively). Note the distinct fossa under the sacral rib attachment on the right, which is absent on the left.

Also, virtually all of our previous coverage of asymmetry has focused on external pneumatic features, like the asymmetric fossae in this sacral of Haplocanthosaurus (featured here), in the tails of Giraffatitan and Apatosaurus (from Wedel and Taylor 2013b), and in the ever-popular holotype of Xenoposeidon. This is true not just on the blog but also in our most recent paper (Taylor and Wedel 2021), which grew out of this post.

Given that cross-sectional asymmetry has barely gotten a look in before now, here are three specimens that show it, presented in ascending levels of weirdness.

First up, a dorsal centrum of Haplocanthosaurus, CM 572. This tracing appeared in Text-fig 8 in my solo prosauropod paper (Wedel 2007), and the CT scout it was traced from is in Fig 6 in my saurischian air-sac paper (Wedel 2009). The section shown here is about 13cm tall dorsoventrally. The pneumatic fossa on the left is comparatively small, shallow, and lacks very distinct overhanging lips of bone. The fossa on the right is about twice as big, it has a more distinct bar of bone forming a ventral lip, and it is separated from the neural canal by a much thinner plate of bone. The fossa on the left is more similar to the condition in dorsal vertebrae of Barapasaurus or juvenile Apatosaurus, where as the one on the right shows a somewhat more extensive and derived degree of pneumatization. The median septum isn’t quite on the midline of the centrum, but it’s pretty stout, which seems to be a consistent feature in presacral vertebrae of Haplocanthosaurus.


Getting weirder. Here’s a section through the mid-centrum of C6 of CM 555, which is probably Brontosaurus parvus. That specific vert has gotten a lot of SV-POW! love over the years: it appears in several posts (like this one, this one, and this one), and in Fig 19 in our neural spine bifurcation paper (Wedel and Taylor 2013a). The section shown here is about 10cm tall, dorsoventrally. In cross-section, it has the classic I-beam configuration for camerate sauropod vertebrae, only the median septum is doing something odd — rather than attaching the midline of the bony floor of the centrum, it’s angled over to the side, to attach to what would normally be the ventral lip of the camera. I suspect that it got this way because the diverticulum on the right either got to the vertebra a little ahead of the one on the left, or just pneumatized the bone faster, because the median septum isn’t just bent, even the vertical bit is displaced to the left of the midline. I also suspect that this condition was able to be maintained because the median septa weren’t that mechanically important in a lot of these vertebrae. We use “I-beam” as a convenient shorthand to describe the shape, but in a metal I-beam the upright is as thick or thicker than the cross bits. In contrast, camerate centra of sauropod vertebrae could be more accurately described as a cylinders or boxes of bone with some holes in the sides. I think the extremely thin median septum is just a sort of developmental leftover from the process of pneumatization.

EDIT 3 days later: John Whitlock reminded me in the comments of Zurriaguz and Alvarez (2014), who looked at asymmetry in the lateral pneumatic foramina in cervical and dorsal vertebrae of titanosaurs, and found that consistent asymmetry along the cervical column was not unusual. They also explicitly hypothesized that the asymmetry was caused by diverticula on one side reaching the vertebrae earlier than diverticula on other other side. I believe they were the first to advance that idea in print (although I should probably take my own advice and scour the historical literature for any earlier instances), and needless to say, I think they’re absolutely correct.

Both of the previous images were traced from CTs, but the next one is traced from a photo of a specimen, OMNH 1882, that was broken transversely through the posterior centrum. To be honest, I’m not entirely certain what critter this vertebra is from. It is too long and the internal structure is too complex for it to be Camarasaurus. I think an apatosaurine identity is unlikely, too, given the proportional length of the surviving chunk of centrum, and the internal structure, which looks very different from CM 555 or any other apatosaur I’ve peered inside. Diplodocus and Brachiosaurus are also known from the Morrison quarries at Black Mesa, in the Oklahoma panhandle, which is where this specimen is from. Of those two, the swoopy ventral margin of the posterior centrum looks more Diplodocus-y than Brachiosaurus-y to me, and the specimen lacks the thick slab of bone that forms the ventral centrum in presacrals of Brachiosaurus and Giraffatitan (see Schwarz and Fritsch 2006: fig. 4, and this post). So on balance I think probably Diplodocus, but I could easily be wrong.

Incidentally, the photo is from 2003, before I knew much about how to properly photograph specimens. I really need to have another look at this specimen, for a lot of reasons.

Whatever taxon the vertebra is from, the internal structure is a wild scene. The median septum is off midline and bent, this time at the top rather than the bottom, the thick ventral rim of the lateral pneumatic foramen is hollow on the right but not on the left, and there are wacky chambers around the neural canal and one in the ventral floor of the centrum. 

I should point out that no-one has ever CT-scanned this specimen, and single slices can be misleading. Maybe the ventral rim of the lateral foramen is hollow just a little anterior or posterior to this slice. Possibly the median septum is more normally configured elsewhere in the centrum. But at least at the break point, this thing is crazy. 

What’s it all mean? Maybe the asymmetry isn’t noise, maybe it’s signal. We know that when bone and pneumatic epithelium get to play together, they tend to make weird stuff. Sometimes that weirdness gets constrained by functional demands, other times not so much. I think it’s very seductive to imagine sauropod vertebrae as these mechanically-optimized, perfect structures, but we have other evidence that that’s not always true (for example). Maybe as long as the articular surfaces, zygapophyses, epipophyses, neural spine tips, and cervical ribs — the mechanically-important bits — ended up in the right places, and the major laminae did a ‘good enough’ job of transmitting forces, the rest of each vertebra could just sorta do whatever. Maybe most of them end up looking more or less the same because of shared development, not because it was so very important that all the holes and flanges were in precisely the same places. That might explain why we occasionally get some really odd verts, like C11 of the Diplodocus carnegii holotype.

That’s all pretty hand-wavy and I haven’t yet thought of a way to test it, but someone probably will sooner or later. In the meantime, I think it’s valuable to just keep documenting the weirdness as we find it.


Figure 3. BIBE 45854, articulated series of nine mid and posterior cervical vertebrae of a large, osteologically mature Alamosaurus sanjuanensis. Series is estimated to represent the sixth to fourteenth cervical vertebrae. A, composite photo-mosaic of the cervical series in right lateral view; identification of each vertebra indicated by C6 to C14, respectively. B, line drawing based on the photo-mosaic in A. C, line drawing in B with labels shown and vertebral fossae indicated by solid grey fill; cross-hatching represents broken bone surfaces and reconstructive material. Abbreviations: C, cervical vertebra; cdf, centrodiapophyseal fossa; clf, centrum lateral fossa; pocdf, postzygapophyseal centrodiapophyseal fossa; prcdf, prezygapophyseal centrodiapophyseal fossa; prcdf1, dorsal prezygapophyseal centrodiapophyseal fossa; prcdf2, ventral prezygapophyseal centrodiapophyseal fossa; sdf, spinodiapophyseal fossa; spof, spinopostzygapophyseal fossa; sprf, spinoprezygapophyseal fossa. (Tykoski and Fiorillo 2016)

Have you been reading Justin Tweet’s series, “Your Friends the Titanosaurs“, at his awesomely-named blog, Equatorial Minnesota? If not, get on it. He’s been running the series since June, 2018, so this notice is only somewhat grotesquely overdue. The latest installment, on Alamosaurus from Texas and Mexico, is phenomenal. I have never seen another summary or review that pulled together so much of the relevant literature and explained it all so well. Seriously, that blog post deserves to be a review paper; it could be submitted pretty much as-is, although it would be even better with his two other Alamosaurus posts integrated (this one, and this one). It’s great work, is what I’m saying, and it needs to be acknowledged.

In particular, I was struck by the note by Anonymous in 1941 on the discovery of a cervical vertebra 1.2 meters long. I’d never heard of that ref, and I’ve never seen that vert, but at 120cm it would be in the top 7 longest cervical vertebrae on the planet (see the latest version of the list in this post), narrowly beating out the 118-cm cervical of Puertasaurus. In fairness, the preserved cervical of Puertasaurus is probably a posterior one, and more anterior cervicals might have been longer. Then again, in the big Alamosaurus neck the longest verts are pretty darned posterior, so…we need more Puertasaurus.

EDIT a few hours later: Thanks to the kind offices of Justin Tweet, I’ve now seen Anonymous (1941), and the exact wording is, “A single vertebra, or neck joint bone, is three feet across, only two inches less than four feet long, and in its present fossilized state weighs 600 pounds.” ‘Two inches less than four feet long’ is 46 inches or a hair under 117cm, which puts the supposed giant cervical just behind Puertasaurus after all, but still firmly in the top 10. And depending on how one interprets the passage in Anonymous (1941), it might not have been any bigger than BIBE 45854–see this comment for details.

Big cervical showdown. From the top left: BYU 9024, originally referred to Supersaurus but more likely representing a giant Barosaurus (137cm); the single available cervical of Puertasaurus (118cm); a world-record giraffe neck (2.4m); Alamosaurus referred cervical series BIBE 45854, longest centra are ~81cm; Sauroposeidon holotype OMNH 53062, longest centrum is 125cm. This image makes it very clear that whatever Sauroposeidon was doing, it was a way different thing from Alamosaurus.

Crucially, the longest vertebrae in the BIBE 45854 series are about 80 or 81 cm long, which means that a 1.2-meter cervical would be half again as large. That is a pretty staggering thought, and that individual of Alamosaurus–assuming it was the same taxon as BIBE 45854, and not some other, longer-necked critter–would definitely be a contender for the largest sauropod of all time.

Illustrations here are of the big Alamosaurus cervical series from Big Bend, which was comprehensively described by Ron Tykoski and Tony Fiorillo in 2016, and which we have covered in these previous posts:


  • Anonymous. 1941. Find dinosaur neck bone nearly four feet long. The Science News-Letter 39(1):6–7.
  • Tykoski, R.S. and Fiorillo, A.R. 2016. An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America’s last giant sauropod. Journal of Systematic Palaeontology 15(5):339-364.

Fiona made me a cake for tomorrow.

She asked me if the flowers were OK. I said there were flowering plants at the end of the Cretaceous, so this is acceptable so long as we interpret the sauropod as a titanosaur.

These things just catch my eye, I can’t help it.

Left: Oddbins corkscrew, circa 1997. Right: left femur of Patagotitan mayorum, circa 100,000,000 BC.

Note that the corkscrew features a distinct medially directed femoral head, the bulge in the lateral margin of the proximal portion that is characteristic of titanosaurs, and a straight shaft. OK, it’s missing tibial and fibular condyles at the distant end, but you can’t have everything.


Here are some blank diagrams I whipped up for drawing in spinal cord pathways.

This one shows the whole cord, brainstem, thalamus, and cerebral cortex in coronal section, in cartoon form.

It’s for drawing in ascending sensory and descending motor pathways, as shown in this office hours sketch. DC-ML is dorsal column/medial lemniscus, which carries discriminative touch and conscious proprioception. ALS is anterolateral system, which carries pain, temperature, pressure, and itch. The lateral corticospinal tract carries fibers for voluntary control of major muscle groups. Each pathway differs in terms of where it decussates (crosses the midline, left-to-right and vice versa) and synapses (relays from one neuron to the next). The sensory pathways involve primary, secondary, and tertiary sensory neurons, and the motor pathways involve upper motor neurons (UMNs) and lower motor neurons (LMNs).

This one shows cross-sections of the cord at cervical, thoracic, lumbar, and sacral levels, for drawing ascending and descending pathways and thinking about how patterns of somatotopy come to exist.

Somatotopy is the physical representation of the body in the central nervous system. A common abbreviation scheme is A-T-L for arm-trunk-leg, as shown here for ascending sensory and descending motor pathways.

Finally, this one shows the spinal cord and spinal nerve roots at four adjacent spinal levels, for tracking the specific fates of sensory and motor neurons at each spinal level.

This is particularly useful when working out the consequences of an injury, like the spinal cord hemisection (Brown-Sequard syndrome) shown here in pink. The little human figure only shows the zone in which pain and temperature sensation are lost. There would also be losses of discriminative touch, conscious proprioception, and voluntary motor control on the same side as the injury.

Finally, since we’ve had a bit of a sauropod drought lately, here are a couple of photos of the mounted cast skeleton of Patagotitan in Stanley Field Hall at the Field Museum of Natural History in Chicago.

I gotta say, this mount beats the one at the AMNH in every way, because it’s well lit and you can move all the way around it and even look down on it from above. In fact, in terms of getting to move all the way around it, get well back from it to see the whole thing at once, and even walk directly underneath it (without having to ask permission to hop the fence), it might be the best-mounted sauropod skeleton in the world. The Brachiosaurus outside is also pretty great (evidence), but it loses points because you can’t walk around it on an upstairs balcony. Every other mounted sauropod I know of is either in more cramped surroundings, or you can’t get underneath it, or is less well-lit, or some combination of the above. Am I forgetting any worthy contenders? Feel free to make your case in the comments.

Incidentally, the spinal cord of Patagotitan was something like 120 feet long, and the longest DC-ML primary sensory neurons ran all the way from tail-tip to brainstem before they synapsed, making them among the longest cells in the history of life.

A belated thank-you to Josh Matthews and the rest of the Burpee PaleoFest crew for a fun day at the FMNH back in March. I got home from that trip about 3 days before the pandemic quarantine started, so it’s waaaaay past time for me to blog about how awesome that trip was. Watch this space. UPDATE: hey, look, it only took me a third of a year this time! Link.

This just in from John Conway:

John doesn’t say much about it in the tweet where he unveiled this piece: just “A new #painting, of a Saltapotamus”. His website is just a little more forthcoming:


Saltasaurus was a small (for a sauropod) sauropod from the Late Cretaceous of Argentina. It had a some armour, and a lot of girth.

This reminds me very strongly of Obesethocoelicaudia, a fat restoration of Opisthocoelicaudia that John kindly did for Matt and me to use in our 2014 SVPCA talk, “Slender Giants”:

(Saltasaurus and Opisthocoelicaudia are both derived titanosaurs, and in most phylogenies they come out as pretty closely related.)

Is this kind of restoration credible? After all, it’s a long way from how we’ve been used to seeing Saltasaurus. Here, for example, is how E. Guanuco restored a group of four Saltasaurus individuals in Powell (2003: plate 78):

In this illustration they are tubby in a Normanpedia kind of way, but nothing very different from how (say) Apatosaurus was being restored not too long before then.

But the truth is that lots of animals have flesh envelopes very different from what you might predict based on the skeleton alone. Exhibit A, the inspiration for John’s new piece: the humble hippopotamus. Skeleton:

And life appearance:

It seems more than reasonable that across a clade as diverse, disparate and long-lived as the sauropods, there would have been some that were similarly heavy with flesh. In fact, I think it would be special pleading to argue that there were not.

Which specific sauropods were obese? That is much harder to tell. Hippos can be very heavy with little penalty as they spend much of their time in the water. Perhaps the same was true of some sauropods. If that’s so, then our quest must be for sauropods whose skeletons show adaptations for a semi-aquatic lifestyle, and on that basis Opisthocoelicaudia may have at least two feature supporting this interpretation: very robust limb bones and (if the interpretation of Borsuk-Bialynicka 1977: figure 5 is to be trusted) a transversely broad torso.


  • Powell, Jaime E. 2003. Revision of South American Titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria Museum 111:1-94.


In a comment on the last post, Mike wrote, “perhaps the pneumaticity was intially a size-related feature that merely failed to get unevolved when rebbachisaurs became smaller”.

Caudal pneumaticity in saltasaurines. Cerda et al. (2012: fig. 1).

Or maybe pneumaticity got even more extreme as rebbachisaurids got smaller, which apparently happened with saltasaurines  (see Cerda et al. 2012 and this post).

I think there is probably no scale at which pneumaticity isn’t useful. Like, we see a saltasaurine the size of a big horse and think, “Why does it need to be so pneumatic?”, as if it isn’t still one or two orders of magnitude more massive than an ostrich or an eagle, both of which are hyperpneumatic even though only one of them flies. Even parakeets and hummingbirds have postcranial pneumaticity.

Micro CT of a female Anna’s hummingbird. The black tube in the middle of the neck is the supramedullary airway. Little black dots in the tiny cervical centra are air spaces.

We’re coming around to the idea that the proper way to state the dinosaur size question is, “Why are mammals so lousy at being big on land?” Similarly, the proper way to state the pneumaticity question is probably not “Why is small sauropod X so pneumatic?”, but rather “Why aren’t some of the bigger sauropods even more pneumatic?”

Another thought: we tend to think of saltsaurines as being crazy pneumatic because they pneumatized their limb girdles and caudal chevrons (see Zurriaguz et al. 2017). Those pneumatic foramina are pretty subtle – maybe their apparent absence in other sauropod clades is just because we haven’t looked hard enough. Lots of things have turned out to be pneumatic that weren’t at first glance – see Yates et al. (2012) on basal sauropodomorphs and Wedel and Taylor (2013b) on sauropod tails, for example.

Back of the skull of a bighorn sheep, showing the air spaces inside one of the broken horncores.

Or, even more excitingly, if the absence is genuine, maybe that tells us something about sauropod biomechanics after all. Maybe if you’re an apatosaurine or a giant brachiosaurid, you actually can’t afford to pneumatize your coracoid, for example. One of my blind spots is a naive faith that any element can be pneumatized without penalty, which I believe mostly on the strength of the pneumatic horncores of bison and bighorn sheep. But AFAIK sauropod girdle elements don’t have big marrow cavities for pneumaticity to expand into. Pneumatization of sauropod limb girdles might have come at a real biomechanical cost, and therefore might have only been available to fairly small animals. (And yeah, Sander et al. 2014 found a pneumatic cavity in an Alamosaurus pubis, but it’s not a very big cavity.)

As I flagged in the title, this is noodling, not a finding, certainly not certainty. Just an airhead thinking about air. The comment thread is open, come join me.


WOW! I knew I was dragging a bit on getting around to this vertebral orientation problem, but I didn’t realize a whole month had passed. Yikes. Thanks to everyone who has commented so far, and thanks to Mike for getting the ball rolling on this. Previous posts in this series are here and here.

First up, this may seem like a pointlessly picky thing to even worry about. Can’t we just orient the vertebrae in whichever way feels the most natural, or is easiest? Do we have to think about this?

The alarmingly 3D pelvis of the mounted brontosaur at the AMNH. Note that sauropod pubes are usually illustrated lying flat, so what usually passes for ‘lateral’ view would be roughly from the point of view of the animal’s knee.

I think we do. For sauropods, vertebrae are usually oriented for illustration purposes in one of two ways. The first is however they sit most easily on their pallets. This is similar to the problem Mike and I found for ‘lateral’ views of sauropod pelvic elements when were on our AMNH/Yale trip in 2012. In an articulated skeleton, the pubes and ischia usually lean inward by 30-45 degrees from their articulations with the ilia, so they can meet on the midline, but when people illustrate the “lateral view” of a sauropod pubis or ischium, it’s often the ventro-lateral aspect that is face-up when the element is lying on a shelf or a pallet. Photographic lateral does not equal biological lateral for those elements. Similarly, if I’m trying to answer biological questions about vertebrae (see below), I need to know something about their orientation in the body, not just how they sit comfortably on a pallet.

The other way that vertebrae are commonly oriented is according to what we might call the “visual long axis” of the centrum—so for example, dorsoventrally tall but craniocaudally short proximal caudals get oriented with the centrum ‘upright’, whereas dorsoventrally short but craniocaudally long distal caudals get oriented with the centrum ‘horizontal’, even if they’re in the same tail and doing so makes the neural canals or articular faces be oriented inconsistently down the column. (I’m not going to name names, because it seems mean to pick on people for something I just started thinking about myself, but if you go plow through a bunch of sauropod descriptions, you’ll see what I’m talking about.)

Are there biological questions where this matters? You bet! There are some questions that we can’t answer unless we have the vertebrae correctly oriented first. One that comes to mind is measuring the cross-sectional area of the neural canal, which Emily Giffin did a lot of back in the 90s. Especially for the Snowmass Haplocanthosaurus, what counts as the cross-sectional area of the neural canal depends on whether we are looking at the verts orthogonal to their articular faces, or in alignment with the course of the canal. I think the latter is pretty obviously the way to go if we are measuring the cross-sectional area of the canal to try and infer the diameter of the spinal cord—we’d want to see the canal the same way the cord ‘sees’ it as it passes through—but it’s less obvious if we’re measuring, say, the surface area of the articular face of the vertebra to figure out, say, cartilage stress. It doesn’t seem unreasonable to me that we might want to define a ‘neural axis’ for dealing with spinal-cord-related questions, and a ‘biomechanical axis’ for dealing with articulation-related questions.

Caudal 3 of the Snowmass Haplocanthosaurus, hemisected 3D model.

With all that in mind, here are some points.

To me, asking “how do we know if a vertebra is horizontal” is an odd phrasing of the problem, because “horizontal” doesn’t have any biological meaning. I think it makes more sense to couch the question as, “how do we define cranial and caudal for a vertebra?” Normally both the articular surfaces and the neural canal are “aimed” head- and tail-wards, so the question doesn’t come up. Our question is, how do we deal with vertebrae for which the articular surfaces and neural canal give different answers?

For example. Varanus komodoensis caudal.

(And by the way, I’m totally fine using “anterior” and “posterior” for quadrupedal animals like sauropods. I don’t think it causes any confusion, any more than people are confused by “superior” and “inferior” for human vertebrae. But precisely because we’re angling for a universal solution here, I think using “cranial” and “caudal” makes the most sense, just this once. That said, when I made the image above, I used anterior and posterior, and I’m too lazy now to change it.)

I think if we couch the question as “how do we define cranial and caudal”, it sets up a different set of possible answers than Mike proposed in the first post in this series: (1) define cranial and caudal according to the neural canal, and then describe the articular surfaces as inclined or tilted relative to that axis; (2) vice versa—realizing that using the articular surfaces to define the anatomical directions may admit a range of possible solutions, which might resurrect some of the array of possible methods from our first-draft abstract; (3) define cranial and caudal along the long axis of the centrum, which is potentially different from either of the above; (4) we can imagine a range of other possibilities, like “use the zygs” or “make the transverse processes horizontal” (both of which are subsets of Mike’s method C) but I don’t think most of those other possibilities are sufficiently compelling to be worthy of lengthy discussion.

IF we accept “neural canal”, “articular surfaces”, and “centrum long axis” as our strongest contenders, I think it makes most sense to go with the neural canal, for several reasons:

  • In a causative sense, the neural tube/spinal cord does define the cranial/caudal axis for the developing skeleton. EDIT: Actually, that’s a bit backwards. It’s the notochord, which is later replaced by the vertebral column, that induces the formation of the brain and spinal cord from the neural plate. But it’s still true that the vertebrae form around the spinal cord, so it’s not wrong to talk about the spinal cord as a defining bit of soft tissue for the developing vertebrae to accommodate.
  • The neural canal works equally well for isolated vertebrae and for articulated series. Regardless of how the vertebral column is oriented in life, the neural canal is relatively smooth—it may bend, but it doesn’t kink. So if we line up a series of vertebrae so that their neural canals are aligned, we’re probably pretty close to the actual alignment in life, even before we look at the articular surfaces or zygs.
  • The articulated tails of Opisthocoelicaudia and big varanids show that sometimes the articular surfaces simply are tilted to anything that we might reasonably consider to be the cranio-caudal axis or long axis of the vertebra. In those cases, the articular surfaces aren’t orthogonal to horizontal OR to cranio-caudal. So I think articular surfaces are ruled out because they break down in the kinds of edge cases that led us to ask the question in the first places.

Opistocoelicaudia caudals 6-8, stereopair, Borsuk-Bialynicka (1977:plate 5).

“Orient vertebrae, isolated or in series, so that their neural canals define the cranio-caudal axis” may seem like kind of a ‘duh’ conclusion (if you accept that it’s correct; you may not!), but as discussed up top, often vertebrae from a single individual are oriented inconsistently in descriptive works, and orientation does actually matter for answering some kinds of questions. So regardless of which conclusion we settle on, there is a need to sort out this problem.

That’s where I’m at with my thinking. A lot of this has been percolating in my hindbrain over the last few weeks—I figured out most of this while I was writing this very post. Is it compelling? Am I talking nonsense? Let me know in the comments.

Here’s the story of my fascination with supramedullary airways over the last 20 years, and how Jessie Atterholt and I ended up working on them together, culminating with her talk at SVPCA last week. (Just here for the preprint link? Here you go.)

Müller (1908: fig. 12). Upper respiratory tract, trachea, and lungs in pink, air sacs and diverticula in blue. DSPM = diverticulum supramedullare.

Way back when I was working on my Master’s thesis at the University of Oklahoma and getting into pneumaticity for the first time, Kent Sanders found Müller (1908) and gave me a photocopy. This would have been the spring or summer of 1998, because we used some of Müller’s illustrations in our poster for SVP that year (Wedel and Sanders 1998). Müller’s description of pneumatic diverticula in the pigeon formed part of my intellectual bedrock, and I’ve referenced it a lot in my pneumaticity papers (complete list here).

One of the systems that Müller described is the diverticulum supramedullare, a.k.a. supramedullary diverticula, or, informally, supramedullary airways (SMAs). Traditionally these are defined as pneumatic diverticula that enter the neural canal and lie dorsal (supra) to the spinal cord (medulla), although O’Connor (2006) noted that in some cases the diverticula could completely envelop the spinal cord in a tube of air. I yapped about SMAs a bit in this post, and they’re flagged in almost every ostrich CT or dissection photo I’ve ever published, here on the blog or in a paper.

CT sections of a Giraffatitan cervical, with connections between the neural canal and pneumatic chambers in the spine highlighted in blue. Modified from Schwarz & Fritsch (2004: fig. 4).

Fast forward to 2006, when Daniela Schwarz and Guido Fritsch documented pneumatic foramina in the roof of the neural canal in cervical vertebrae of Giraffatitan. As far as I know, this was the first published demonstration of SMAs in a non-bird, or in any extinct animal. Lemme repeat that: Daniela Schwarz found these first!

OMNH 60718: too ugly for radio. This is an unfused neural arch in ventral view. Anterior is to the left. Neurocentral joint surfaces are drawn over with ladders; pneumatic foramina lie between them.

Shortly thereafter I independently found evidence of SMAs in a sauropod, in the form of multiple pneumatic foramina in the roof of the neural canal in an unfused neural arch of a basal titanosauriform (probably a brachiosaurid) from the Cloverly Formation of Montana. It’s a pretty roadkilled specimen and I was busy with other things so I didn’t get around to writing it up, but I didn’t forget about it, either (I rarely forget about stuff like this).

Then in 2013 I went to the Perot Museum in Dallas to see the giant Alamosaurus cervical series, and I also visited the off-site research facility where juvenile Alamosaurus from Big Bend is housed. When Ron Tykoski let me into the collections room, I was literally walking through the door for the first time when I exclaimed, “Holy crap!” I had spotted an unfused neural arch of a juvenile Alamosaurus on a shelf across the room, with complex pneumatic sculpting all over the roof of the neural canal.

Title slide for the 2014 SVPCA presentation.

The Big Bend and Cloverly specimens were the basis for my talk on SMAs at SVPCA in 2014, coauthored with Anthony Fiorillo, Des Maxwell, and Ron Tykoski. As prep for that talk, I visited the ornithology collections at the Natural History Museum of Los Angeles County, photographed a lot of bird vertebrae with foramina inside their neural canals, and shot this pelican video. That was four years ago – why no paper yet? It’s because I wanted one more piece of smoking-gun evidence: a CT scan of a bird that would show a direct communication between the SMAs and the air spaces inside a vertebra, through one or more foramina in the roof, wall, or floor of the neural canal.

A spectrum of pneumatic traces in the neural canals of birds, including complexes of large or small foramina, isolated foramina, and sculpting without foramina.

In 2017, Jessie Atterholt taught in our summer anatomy course at WesternU as an adjunct (her full-time employment was at the Webb Schools in Claremont, home of the Alf Museum). Jessie and I had been acquainted for a few years, but we’d never had the opportunity to really talk science. As we chatted between dissections, I learned that she had a huge warchest of CT scans of whole birds from her dissertation work at Berkeley (we’d missed each other by a few years). My antennae twitched: one nice thing about SMAs is that, being bounded by bone, they can’t collapse after death, unlike more peripheral diverticula. And air is jet black on CT scans, so SMAs are easy to spot even on comparatively low-res scans. All you need is one or two black pixels. I proposed a collaboration: we could use her CT scans to survey the presence and distribution of SMAs in as many birds as possible.

Vertebral diverticula in two sagittally-exploded cervical vertebrae of a turkey. Anterior is to the left, #5 is the SMA. Cover (1953: fig. 2). Yes, I know this is gross – if anyone has a cleaner scan, I’m interested.

You might think that such a survey would have been done ages ago, but it’s not the case. A few authors have mentioned supramedullary airways, and O’Connor (2006) gave a good description of some of the variation in SMAs in extant birds as a whole. But the only detailed accounts to illustrate the morphology and extent of the SMAs in a single species are Müller (1908) on the common pigeon and Cover (1953) on the domestic turkey. I’d seen what I suspected were traces of SMAs in the vertebrae of many, mostly large-bodied birds, and I’d seen them in CTs of ostriches and hummingbirds, and in ostriches and turkeys in dissection. But Jessie was offering the chance to see both the SMAs and their osteological traces in dozens of species from across the avian tree.

SMAs in a micro-CT of a female Anna’s hummingbird, Calypte anna. Scale bars are in mm.

Real life intervened: we were both so busy teaching last fall that we didn’t get rolling until just before the holidays. But the project gradually built up steam over the course of 2018. One story that will require more unpacking later: everything I’ve written on this blog about neural canals, Haplocanthosaurus, or CT scanning in 2018 is something serendipitously spun out of the SMA survey with Jessie. Expect a lot more Atterholt and Wedel joints in the near future – and one Atterholt et al. (minus Wedel) even sooner, that is going to be big news. Watch this space.

It didn’t hurt that in the meantime Jessie got a tenure-track job teaching human anatomy at WesternU, to run the same course she’d taught in as an adjunct last year, and started here at the beginning of June. By that time we had an abstract on our findings ready to go for this year’s SVP meeting. Alas, it was not to be: we were out in the field this summer when we learned that our abstract had been rejected. (I have no idea why; we’ve increased the taxonomic sampling of SMAs in extant birds by a factor of six or so, most of our important findings are in the abstract, and we mentioned the relevance to fossils. But whatever.)

We were bummed for a day, and then Jessie decided that she’d submit the abstract to SVPCA, only slightly chopped for length, and go to Manchester to present if it was accepted – which it was. Unfortunately I’d already made other plans for the fall, so I missed the fun. Fortunately the SVPCA talks were livestreamed, so last Friday at 1:30 in the morning I got to watch Jessie give the talk. I wish the talks had been recorded, because she knocked it out of the park.

Title slide for the 2018 SVPCA presentation.

And now everything we’re in a position to share is freely available at PeerJ. The SVPCA abstract is up as a PeerJ preprint (Atterholt and Wedel 2018), the longer, rejected SVP abstract is up as a supplementary file (because it has a crucial paragraph of results we had to cut to make the length requirement for SVPCA, and because why not), and our slideshow is up now, too. I say ‘our’ slideshow but it’s really Jessie’s – she built it and delivered it with minimal input from me, while I held down the sauropod side of our expanding empire of neural canal projects. She has the paper mostly written, too.

Oh, and we did get the smoking-gun images I wanted, of SMAs communicating with pneumatic spaces in the vertebrae via foramina in the neural canal. Often these foramina go up into the neural arch and spine, but in some cases – notably in pelicans and the occasional ratite – they go down into the centrum. So I now have no excuse for not getting back to the sauropod SMA paper (among many other things).

We’re making this all available because not only are we not afraid of getting scooped, we’re trying to get the word out. SMAs are phylogenetically widespread in birds and we know they were present in sauropods as well, so we should see some evidence of them in theropods and pterosaurs (because reasons). I made such a nuisance of myself at the recent Flugsaurier meeting, talking to everyone who would listen about SMAs, that Dave Hone went and found some pneumatic foramina in the neural canals of Pteranodon vertebrae during the conference – I suspect just to shut me up. That’ll be some kind of Hone-Atterholt-Wedel-and-some-others joint before long, too.

Anyway, point is, SMAs are cool, and you now have everything you need to go find them in more critters. Jessie and I are happy to collaborate if you’re interested – if nothing else, we have the background, lit review, and phylogenetic sampling down tight – but we don’t own SMAs, and we’ll be nothing but thrilled when your own reports start rolling in. Unexplored anatomical territory beckons, people. Let’s do this.


I got an email a couple of days ago from Maija Karala, asking me a question I’d not come across before (among several other questions): how much poop did Argentinosaurus produce in a day?

I don’t recall this question having been addressed in the literature, though if anyone knows different please shout. Having thought about it a little, I sent the following really really vague and hand-wavy response.

Suppose Argentinosaurus massed 73 tonnes (Mazzetta et al. 2004). In cattle, food intake varies roughly with body mass to the power 0.7 (Taylor et al. 1986), so let’s assume that the same is true of sauropods.

Let’s also assume that sauropods are like scaled-up elephants, in that both would have subsisted on low-quality forage. Wikipedia says elephants “can consume as much as 150 kg (330 lb) of food and 40 L (11 US gal) of water in a day.” Let’s assume that the “as much as” suggests we’re talking about a big elephant here, maybe 6 tonnes. So Argentinosaurus is 73/6 = 12 times as heavy, which means its food intake would be 12 ^ 0.7 = 5.7 times as much. That’s 850 kg per day.

Hummel et al. (2008, table 1) show that for a range of foods, the indigestible “neutral detergent fibre” makes up something around half of the mass, so let’s assume that’s the bulk of what gets pooped out, and halve the input to get about 400 kg of poop per day.


  • Hummel, Jürgen, Carole T. Gee, Karl-Heinz Südekum, P. Martin Sander, Gunther Nogge and Marcus Clauss. 2008. In vitro digestibility of fern and gymnosperm foliage: implications for sauropod feeding ecology and diet selection. Proceedings of the Royal Society B, 275:1015-1021. doi:10.1098/rspb.2007.1728
  • Mazzetta, Gerardo V., Per Christiansen and Richard A. Farina. 2004. Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs. Historical Biology 2004:1-13.
  • Taylor, C. S., A. J. Moore and R. B. Thiessen. 1986. Voluntary food intake in relation to body weight among British breeds of cattle. Animal Science 42(1):11-18.

You could drive several trucks through the holes in that reasoning, but it’s a start. Can anyone help to refine the reasoning, improve the references, and get a better estimate?