In a comment on the last post, Mike wrote, “perhaps the pneumaticity was intially a size-related feature that merely failed to get unevolved when rebbachisaurs became smaller”.

Caudal pneumaticity in saltasaurines. Cerda et al. (2012: fig. 1).

Or maybe pneumaticity got even more extreme as rebbachisaurids got smaller, which apparently happened with saltasaurines  (see Cerda et al. 2012 and this post).

I think there is probably no scale at which pneumaticity isn’t useful. Like, we see a saltasaurine the size of a big horse and think, “Why does it need to be so pneumatic?”, as if it isn’t still one or two orders of magnitude more massive than an ostrich or an eagle, both of which are hyperpneumatic even though only one of them flies. Even parakeets and hummingbirds have postcranial pneumaticity.

Micro CT of a female Anna’s hummingbird. The black tube in the middle of the neck is the supramedullary airway. Little black dots in the tiny cervical centra are air spaces.

We’re coming around to the idea that the proper way to state the dinosaur size question is, “Why are mammals so lousy at being big on land?” Similarly, the proper way to state the pneumaticity question is probably not “Why is small sauropod X so pneumatic?”, but rather “Why aren’t some of the bigger sauropods even more pneumatic?”

Another thought: we tend to think of saltsaurines as being crazy pneumatic because they pneumatized their limb girdles and caudal chevrons (see Zurriaguz et al. 2017). Those pneumatic foramina are pretty subtle – maybe their apparent absence in other sauropod clades is just because we haven’t looked hard enough. Lots of things have turned out to be pneumatic that weren’t at first glance – see Yates et al. (2012) on basal sauropodomorphs and Wedel and Taylor (2013b) on sauropod tails, for example.

Back of the skull of a bighorn sheep, showing the air spaces inside one of the broken horncores.

Or, even more excitingly, if the absence is genuine, maybe that tells us something about sauropod biomechanics after all. Maybe if you’re an apatosaurine or a giant brachiosaurid, you actually can’t afford to pneumatize your coracoid, for example. One of my blind spots is a naive faith that any element can be pneumatized without penalty, which I believe mostly on the strength of the pneumatic horncores of bison and bighorn sheep. But AFAIK sauropod girdle elements don’t have big marrow cavities for pneumaticity to expand into. Pneumatization of sauropod limb girdles might have come at a real biomechanical cost, and therefore might have only been available to fairly small animals. (And yeah, Sander et al. 2014 found a pneumatic cavity in an Alamosaurus pubis, but it’s not a very big cavity.)

As I flagged in the title, this is noodling, not a finding, certainly not certainty. Just an airhead thinking about air. The comment thread is open, come join me.



WOW! I knew I was dragging a bit on getting around to this vertebral orientation problem, but I didn’t realize a whole month had passed. Yikes. Thanks to everyone who has commented so far, and thanks to Mike for getting the ball rolling on this. Previous posts in this series are here and here.

First up, this may seem like a pointlessly picky thing to even worry about. Can’t we just orient the vertebrae in whichever way feels the most natural, or is easiest? Do we have to think about this?

The alarmingly 3D pelvis of the mounted brontosaur at the AMNH. Note that sauropod pubes are usually illustrated lying flat, so what usually passes for ‘lateral’ view would be roughly from the point of view of the animal’s knee.

I think we do. For sauropods, vertebrae are usually oriented for illustration purposes in one of two ways. The first is however they sit most easily on their pallets. This is similar to the problem Mike and I found for ‘lateral’ views of sauropod pelvic elements when were on our AMNH/Yale trip in 2012. In an articulated skeleton, the pubes and ischia usually lean inward by 30-45 degrees from their articulations with the ilia, so they can meet on the midline, but when people illustrate the “lateral view” of a sauropod pubis or ischium, it’s often the ventro-lateral aspect that is face-up when the element is lying on a shelf or a pallet. Photographic lateral does not equal biological lateral for those elements. Similarly, if I’m trying to answer biological questions about vertebrae (see below), I need to know something about their orientation in the body, not just how they sit comfortably on a pallet.

The other way that vertebrae are commonly oriented is according to what we might call the “visual long axis” of the centrum—so for example, dorsoventrally tall but craniocaudally short proximal caudals get oriented with the centrum ‘upright’, whereas dorsoventrally short but craniocaudally long distal caudals get oriented with the centrum ‘horizontal’, even if they’re in the same tail and doing so makes the neural canals or articular faces be oriented inconsistently down the column. (I’m not going to name names, because it seems mean to pick on people for something I just started thinking about myself, but if you go plow through a bunch of sauropod descriptions, you’ll see what I’m talking about.)

Are there biological questions where this matters? You bet! There are some questions that we can’t answer unless we have the vertebrae correctly oriented first. One that comes to mind is measuring the cross-sectional area of the neural canal, which Emily Giffin did a lot of back in the 90s. Especially for the Snowmass Haplocanthosaurus, what counts as the cross-sectional area of the neural canal depends on whether we are looking at the verts orthogonal to their articular faces, or in alignment with the course of the canal. I think the latter is pretty obviously the way to go if we are measuring the cross-sectional area of the canal to try and infer the diameter of the spinal cord—we’d want to see the canal the same way the cord ‘sees’ it as it passes through—but it’s less obvious if we’re measuring, say, the surface area of the articular face of the vertebra to figure out, say, cartilage stress. It doesn’t seem unreasonable to me that we might want to define a ‘neural axis’ for dealing with spinal-cord-related questions, and a ‘biomechanical axis’ for dealing with articulation-related questions.

Caudal 3 of the Snowmass Haplocanthosaurus, hemisected 3D model.

With all that in mind, here are some points.

To me, asking “how do we know if a vertebra is horizontal” is an odd phrasing of the problem, because “horizontal” doesn’t have any biological meaning. I think it makes more sense to couch the question as, “how do we define cranial and caudal for a vertebra?” Normally both the articular surfaces and the neural canal are “aimed” head- and tail-wards, so the question doesn’t come up. Our question is, how do we deal with vertebrae for which the articular surfaces and neural canal give different answers?

For example. Varanus komodoensis caudal.

(And by the way, I’m totally fine using “anterior” and “posterior” for quadrupedal animals like sauropods. I don’t think it causes any confusion, any more than people are confused by “superior” and “inferior” for human vertebrae. But precisely because we’re angling for a universal solution here, I think using “cranial” and “caudal” makes the most sense, just this once. That said, when I made the image above, I used anterior and posterior, and I’m too lazy now to change it.)

I think if we couch the question as “how do we define cranial and caudal”, it sets up a different set of possible answers than Mike proposed in the first post in this series: (1) define cranial and caudal according to the neural canal, and then describe the articular surfaces as inclined or tilted relative to that axis; (2) vice versa—realizing that using the articular surfaces to define the anatomical directions may admit a range of possible solutions, which might resurrect some of the array of possible methods from our first-draft abstract; (3) define cranial and caudal along the long axis of the centrum, which is potentially different from either of the above; (4) we can imagine a range of other possibilities, like “use the zygs” or “make the transverse processes horizontal” (both of which are subsets of Mike’s method C) but I don’t think most of those other possibilities are sufficiently compelling to be worthy of lengthy discussion.

IF we accept “neural canal”, “articular surfaces”, and “centrum long axis” as our strongest contenders, I think it makes most sense to go with the neural canal, for several reasons:

  • In a causative sense, the neural tube/spinal cord does define the cranial/caudal axis for the developing skeleton. EDIT: Actually, that’s a bit backwards. It’s the notochord, which is later replaced by the vertebral column, that induces the formation of the brain and spinal cord from the neural plate. But it’s still true that the vertebrae form around the spinal cord, so it’s not wrong to talk about the spinal cord as a defining bit of soft tissue for the developing vertebrae to accommodate.
  • The neural canal works equally well for isolated vertebrae and for articulated series. Regardless of how the vertebral column is oriented in life, the neural canal is relatively smooth—it may bend, but it doesn’t kink. So if we line up a series of vertebrae so that their neural canals are aligned, we’re probably pretty close to the actual alignment in life, even before we look at the articular surfaces or zygs.
  • The articulated tails of Opisthocoelicaudia and big varanids show that sometimes the articular surfaces simply are tilted to anything that we might reasonably consider to be the cranio-caudal axis or long axis of the vertebra. In those cases, the articular surfaces aren’t orthogonal to horizontal OR to cranio-caudal. So I think articular surfaces are ruled out because they break down in the kinds of edge cases that led us to ask the question in the first places.

Opistocoelicaudia caudals 6-8, stereopair, Borsuk-Bialynicka (1977:plate 5).

“Orient vertebrae, isolated or in series, so that their neural canals define the cranio-caudal axis” may seem like kind of a ‘duh’ conclusion (if you accept that it’s correct; you may not!), but as discussed up top, often vertebrae from a single individual are oriented inconsistently in descriptive works, and orientation does actually matter for answering some kinds of questions. So regardless of which conclusion we settle on, there is a need to sort out this problem.

That’s where I’m at with my thinking. A lot of this has been percolating in my hindbrain over the last few weeks—I figured out most of this while I was writing this very post. Is it compelling? Am I talking nonsense? Let me know in the comments.

Here’s the story of my fascination with supramedullary airways over the last 20 years, and how Jessie Atterholt and I ended up working on them together, culminating with her talk at SVPCA last week. (Just here for the preprint link? Here you go.)

Müller (1908: fig. 12). Upper respiratory tract, trachea, and lungs in pink, air sacs and diverticula in blue. DSPM = diverticulum supramedullare.

Way back when I was working on my Master’s thesis at the University of Oklahoma and getting into pneumaticity for the first time, Kent Sanders found Müller (1908) and gave me a photocopy. This would have been the spring or summer of 1998, because we used some of Müller’s illustrations in our poster for SVP that year (Wedel and Sanders 1998). Müller’s description of pneumatic diverticula in the pigeon formed part of my intellectual bedrock, and I’ve referenced it a lot in my pneumaticity papers (complete list here).

One of the systems that Müller described is the diverticulum supramedullare, a.k.a. supramedullary diverticula, or, informally, supramedullary airways (SMAs). Traditionally these are defined as pneumatic diverticula that enter the neural canal and lie dorsal (supra) to the spinal cord (medulla), although O’Connor (2006) noted that in some cases the diverticula could completely envelop the spinal cord in a tube of air. I yapped about SMAs a bit in this post, and they’re flagged in almost every ostrich CT or dissection photo I’ve ever published, here on the blog or in a paper.

CT sections of a Giraffatitan cervical, with connections between the neural canal and pneumatic chambers in the spine highlighted in blue. Modified from Schwarz & Fritsch (2004: fig. 4).

Fast forward to 2006, when Daniela Schwarz and Guido Fritsch documented pneumatic foramina in the roof of the neural canal in cervical vertebrae of Giraffatitan. As far as I know, this was the first published demonstration of SMAs in a non-bird, or in any extinct animal. Lemme repeat that: Daniela Schwarz found these first!

OMNH 60718: too ugly for radio. This is an unfused neural arch in ventral view. Anterior is to the left. Neurocentral joint surfaces are drawn over with ladders; pneumatic foramina lie between them.

Shortly thereafter I independently found evidence of SMAs in a sauropod, in the form of multiple pneumatic foramina in the roof of the neural canal in an unfused neural arch of a basal titanosauriform (probably a brachiosaurid) from the Cloverly Formation of Montana. It’s a pretty roadkilled specimen and I was busy with other things so I didn’t get around to writing it up, but I didn’t forget about it, either (I rarely forget about stuff like this).

Then in 2013 I went to the Perot Museum in Dallas to see the giant Alamosaurus cervical series, and I also visited the off-site research facility where juvenile Alamosaurus from Big Bend is housed. When Ron Tykoski let me into the collections room, I was literally walking through the door for the first time when I exclaimed, “Holy crap!” I had spotted an unfused neural arch of a juvenile Alamosaurus on a shelf across the room, with complex pneumatic sculpting all over the roof of the neural canal.

Title slide for the 2014 SVPCA presentation.

The Big Bend and Cloverly specimens were the basis for my talk on SMAs at SVPCA in 2014, coauthored with Anthony Fiorillo, Des Maxwell, and Ron Tykoski. As prep for that talk, I visited the ornithology collections at the Natural History Museum of Los Angeles County, photographed a lot of bird vertebrae with foramina inside their neural canals, and shot this pelican video. That was four years ago – why no paper yet? It’s because I wanted one more piece of smoking-gun evidence: a CT scan of a bird that would show a direct communication between the SMAs and the air spaces inside a vertebra, through one or more foramina in the roof, wall, or floor of the neural canal.

A spectrum of pneumatic traces in the neural canals of birds, including complexes of large or small foramina, isolated foramina, and sculpting without foramina.

In 2017, Jessie Atterholt taught in our summer anatomy course at WesternU as an adjunct (her full-time employment was at the Webb Schools in Claremont, home of the Alf Museum). Jessie and I had been acquainted for a few years, but we’d never had the opportunity to really talk science. As we chatted between dissections, I learned that she had a huge warchest of CT scans of whole birds from her dissertation work at Berkeley (we’d missed each other by a few years). My antennae twitched: one nice thing about SMAs is that, being bounded by bone, they can’t collapse after death, unlike more peripheral diverticula. And air is jet black on CT scans, so SMAs are easy to spot even on comparatively low-res scans. All you need is one or two black pixels. I proposed a collaboration: we could use her CT scans to survey the presence and distribution of SMAs in as many birds as possible.

Vertebral diverticula in two sagittally-exploded cervical vertebrae of a turkey. Anterior is to the left, #5 is the SMA. Cover (1953: fig. 2). Yes, I know this is gross – if anyone has a cleaner scan, I’m interested.

You might think that such a survey would have been done ages ago, but it’s not the case. A few authors have mentioned supramedullary airways, and O’Connor (2006) gave a good description of some of the variation in SMAs in extant birds as a whole. But the only detailed accounts to illustrate the morphology and extent of the SMAs in a single species are Müller (1908) on the common pigeon and Cover (1953) on the domestic turkey. I’d seen what I suspected were traces of SMAs in the vertebrae of many, mostly large-bodied birds, and I’d seen them in CTs of ostriches and hummingbirds, and in ostriches and turkeys in dissection. But Jessie was offering the chance to see both the SMAs and their osteological traces in dozens of species from across the avian tree.

SMAs in a micro-CT of a female Anna’s hummingbird, Calypte anna. Scale bars are in mm.

Real life intervened: we were both so busy teaching last fall that we didn’t get rolling until just before the holidays. But the project gradually built up steam over the course of 2018. One story that will require more unpacking later: everything I’ve written on this blog about neural canals, Haplocanthosaurus, or CT scanning in 2018 is something serendipitously spun out of the SMA survey with Jessie. Expect a lot more Atterholt and Wedel joints in the near future – and one Atterholt et al. (minus Wedel) even sooner, that is going to be big news. Watch this space.

It didn’t hurt that in the meantime Jessie got a tenure-track job teaching human anatomy at WesternU, to run the same course she’d taught in as an adjunct last year, and started here at the beginning of June. By that time we had an abstract on our findings ready to go for this year’s SVP meeting. Alas, it was not to be: we were out in the field this summer when we learned that our abstract had been rejected. (I have no idea why; we’ve increased the taxonomic sampling of SMAs in extant birds by a factor of six or so, most of our important findings are in the abstract, and we mentioned the relevance to fossils. But whatever.)

We were bummed for a day, and then Jessie decided that she’d submit the abstract to SVPCA, only slightly chopped for length, and go to Manchester to present if it was accepted – which it was. Unfortunately I’d already made other plans for the fall, so I missed the fun. Fortunately the SVPCA talks were livestreamed, so last Friday at 1:30 in the morning I got to watch Jessie give the talk. I wish the talks had been recorded, because she knocked it out of the park.

Title slide for the 2018 SVPCA presentation.

And now everything we’re in a position to share is freely available at PeerJ. The SVPCA abstract is up as a PeerJ preprint (Atterholt and Wedel 2018), the longer, rejected SVP abstract is up as a supplementary file (because it has a crucial paragraph of results we had to cut to make the length requirement for SVPCA, and because why not), and our slideshow is up now, too. I say ‘our’ slideshow but it’s really Jessie’s – she built it and delivered it with minimal input from me, while I held down the sauropod side of our expanding empire of neural canal projects. She has the paper mostly written, too.

Oh, and we did get the smoking-gun images I wanted, of SMAs communicating with pneumatic spaces in the vertebrae via foramina in the neural canal. Often these foramina go up into the neural arch and spine, but in some cases – notably in pelicans and the occasional ratite – they go down into the centrum. So I now have no excuse for not getting back to the sauropod SMA paper (among many other things).

We’re making this all available because not only are we not afraid of getting scooped, we’re trying to get the word out. SMAs are phylogenetically widespread in birds and we know they were present in sauropods as well, so we should see some evidence of them in theropods and pterosaurs (because reasons). I made such a nuisance of myself at the recent Flugsaurier meeting, talking to everyone who would listen about SMAs, that Dave Hone went and found some pneumatic foramina in the neural canals of Pteranodon vertebrae during the conference – I suspect just to shut me up. That’ll be some kind of Hone-Atterholt-Wedel-and-some-others joint before long, too.

Anyway, point is, SMAs are cool, and you now have everything you need to go find them in more critters. Jessie and I are happy to collaborate if you’re interested – if nothing else, we have the background, lit review, and phylogenetic sampling down tight – but we don’t own SMAs, and we’ll be nothing but thrilled when your own reports start rolling in. Unexplored anatomical territory beckons, people. Let’s do this.


I got an email a couple of days ago from Maija Karala, asking me a question I’d not come across before (among several other questions): how much poop did Argentinosaurus produce in a day?

I don’t recall this question having been addressed in the literature, though if anyone knows different please shout. Having thought about it a little, I sent the following really really vague and hand-wavy response.

Suppose Argentinosaurus massed 73 tonnes (Mazzetta et al. 2004). In cattle, food intake varies roughly with body mass to the power 0.7 (Taylor et al. 1986), so let’s assume that the same is true of sauropods.

Let’s also assume that sauropods are like scaled-up elephants, in that both would have subsisted on low-quality forage. Wikipedia says elephants “can consume as much as 150 kg (330 lb) of food and 40 L (11 US gal) of water in a day.” Let’s assume that the “as much as” suggests we’re talking about a big elephant here, maybe 6 tonnes. So Argentinosaurus is 73/6 = 12 times as heavy, which means its food intake would be 12 ^ 0.7 = 5.7 times as much. That’s 850 kg per day.

Hummel et al. (2008, table 1) show that for a range of foods, the indigestible “neutral detergent fibre” makes up something around half of the mass, so let’s assume that’s the bulk of what gets pooped out, and halve the input to get about 400 kg of poop per day.


  • Hummel, Jürgen, Carole T. Gee, Karl-Heinz Südekum, P. Martin Sander, Gunther Nogge and Marcus Clauss. 2008. In vitro digestibility of fern and gymnosperm foliage: implications for sauropod feeding ecology and diet selection. Proceedings of the Royal Society B, 275:1015-1021. doi:10.1098/rspb.2007.1728
  • Mazzetta, Gerardo V., Per Christiansen and Richard A. Farina. 2004. Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs. Historical Biology 2004:1-13.
  • Taylor, C. S., A. J. Moore and R. B. Thiessen. 1986. Voluntary food intake in relation to body weight among British breeds of cattle. Animal Science 42(1):11-18.

You could drive several trucks through the holes in that reasoning, but it’s a start. Can anyone help to refine the reasoning, improve the references, and get a better estimate?

Click to titanosaurize. Trust me.

I was in Philadelphia a couple of weeks ago to work with Liguo Li, of Yongjinglong fame, and I took a day to run up to New York for a quick day’s work at the American Museum of Natural History. It was my first time visiting since the cast skeleton of Patagotitan went up, so it was my first chance to see that beast in the flesh (so to speak). The pano up top is mine, but the other two photos here are by Liguo. I’m writing with my thoughts on the mount.


  • It’s big.
  • You can walk all the way around it, with no glass in the way.
  • It’s very convincing. The casting job on the real elements is superb, with all of the cracks and so on faithfully recorded. And the vertebrae they had to sculpt look pretty good.
  • The spotlights aimed at the neck cast these immense shadows of the cervical vertebrae on the far wall, which is cool (see below).
  • Now the AMNH has mounted skeletons of Brontosaurus (or some apatosaurine at any rate), Barosaurus, Kaatedocus (masquerading as a juvenile Barosaurus in the rotunda), and Patagotitan – that’s pretty not bad. I’m hard pressed to think of another museum in the Western Hemisphere with so many mounted sauropod skeletons. Carnegie, maybe? Someone help me out, here.


  • In striking contrast to the well-lit, mostly-white aesthetic of the rest of the fossil halls, the orientation gallery holding Patagotitan is mostly in near-Stygian darkness. Shoot in HDR mode if you can.
  • The head poking out into the hallway is a nice trick (see also: Sauroposeidon at the Oklahoma Museum of Natural History), but it means that one of the focal bits of the animal is in a different lighting regime, which makes photography even trickier than it might otherwise have been.
  • The mount feels a bit…cramped by the geometry of the room. Of the AMNH mounted sauropods, it’s easily in the worst space. If you ask me, they should have dethroned Barosaurus from the rotunda (religious commitments notwithstanding) and put Patagotitan there. The Patagotitan mount that is going in Stanley Field Hall at the Field Museum is going to look much more impressive just because of the setting.

In all, not bad, could be better. It was fun for me because the longest cervicals of Sauroposeidon are veeerrry slightly longer than the longest of Patagotitan, and now that Sauroposeidon is coming out as a titanosaur in most analyses…it might have been friggin’ immense.

So, yeah, go see Patagotitan, and all the other good stuff on display at the AMNH.

For more posts on Patagotitan, see:

Back in 2009, I posted on a big cervical series discovered in Big Bend National Park. Then in 2013 I posted again about how I was going to the Perot Museum in Dallas to see that cervical series, which by then was fully prepped and on display but awaiting a full description. Ron Tykoski and Tony Fiorillo (2016) published that description a couple of years ago, and after almost five years it’s probably time I posted an update.

I did visit the Perot Museum in 2013 and Ron and Tony kindly let me hop the fence and get up close and personal with their baby. I got a lot of nice photos and measurements of the big specimen. It’s an impressive thing. Compared to the other big sauropod cervicals I’ve gotten to play with, these vertebrae aren’t all that long – the two longest centra are about 80cm, compared to ~120cm for Sauroposeidon, Puertasaurus, and Patagotitan, and 137cm for Supersaurus (more details here) – but they are massive. According to the table of measurements (yay!) in Tykoski and Fiorillo (2016), which accord well with the measurements I took when I was there, the last vert is 117.5cm tall from the bottom of the cervical rib to the top of the neural spine, 98.4cm wide across the diapophyses, and has a cotyle measuring 29cm tall by 42cm wide. Here it is with me for scale:

I guarantee you, standing next to that thing and imagining it being inside the neck of a living animal is a breathtaking experience.

I failed in my mission in one way. In a comment on my 2013 post, I said, “I’ll try to get some good lateral views of the mount with as little perspective as possible.” But it can’t be done – the geometry of the room and the size of the skeleton don’t allow it, as Ron noted in the very next comment. There is one place in the exhibit hall where you can get the whole skeleton into the frame, and that’s a sort of right anterolateral oblique view. Here’s my best attempt:

So, this is an awesome specimen and you should go see it. As you can see from the photos, the vertebrae are right on the other side of the signage, with no glass between you and them, so you can see a lot. The rest of the exhibits are top notch as well. Definitely worth a visit if you find yourself within striking distance of Dallas.


Tykoski, R.S. and Fiorillo, A.R. 2016. An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America’s last giant sauropod. Journal of Systematic Palaeontology 15(5):339-364.

There’s a new paper out, describing the Argentinian titanosaur Mendozasaurus in detail (Gonzalez Riga et al. 2018): 46 pages of multi-view photos, tables of measurement, and careful, detailed description and discussion. But here’s what leapt out at me when I skimmed the paper:

Gonzalez Riga et al. (2018: figure 6). Mendozasaurus neguyelap cervical vertebra (IANIGLA-PV 076/1) in (A) anterior, (B) left lateral, (C) posterior, (D) right lateral, (E) ventral and (F) dorsal views. Scale bar = 150 mm. Sorry it’s monochrome, but that’s how it appears in the paper.

Just look at that thing. It’s ridiculous. In our 2013 PeerJ paper “Why Giraffes have Short Necks” (Taylor and Wedel 2013), we included a “freak gallery” as figure 7: five very different sauropod cervicals:

Taylor and Wedel (2013: figure 7). Disparity of sauropod cervical vertebrae. 1, Apatosaurus “laticollis” Marsh, 1879b holotype YPM 1861, cervical ?13, now referred to Apatosaurus ajax (see McIntosh, 1995), in posterior and left lateral views, after Ostrom & McIntosh (1966, plate 15); the portion reconstructed in plaster (Barbour, 1890, figure 1) is grayed out in posterior view; lateral view reconstructed after Apatosaurus louisae (Gilmore, 1936, plate XXIV). 2, “Brontosaurus excelsus” Marsh, 1879a holotype YPM 1980, cervical 8, now referred to Apatosaurus excelsus (see Riggs, 1903), in anterior and left lateral views, after Ostrom & McIntosh (1966, plate 12); lateral view reconstructed after Apatosaurus louisae (Gilmore, 1936, plate XXIV). 3, “Titanosaurus” colberti Jain & Bandyopadhyay, 1997 holotype ISIR 335/2, mid-cervical vertebra, now referred to Isisaurus (See Wilson & Upchurch, 2003), in posterior and left lateral views, after Jain & Bandyopadhyay (1997, figure 4). 4, “Brachiosaurus” brancai paralectotype MB.R.2181, cervical 8, now referred to Giraffatitan (see Taylor, 2009), in posterior and left lateral views, modified from Janensch (1950, figures 43–46). 5, Erketu ellisoni holotype IGM 100/1803, cervical 4 in anterior and left lateral views, modified from Ksepka & Norell (2006, figures 5a–d).

But this Mendozasaurus vertebra is crazier than any of them, with its tiny centrum, its huge, broad but anteroposteriorly flattened neural spine, and its pronounced lSPRLs.

I just don’t know what to make of this, and neither does Matt. And part of the reason for this may be that neither of us has had that much to do with titanosaurs. As Matt said in email, “Those weird ballooned-up neural spines in titanosaurs kind of freak me out.” And I could not agree more.

And of course as sauropodologists, we really should familiarise ourselves with titanosaurs. There are a lot of them, and they account for a lot of sauropod evolution. Someone recently made the point, either in an SV-POW! comment or on Facebook, that titanosaurs may be to sauropods what monkeys and apes are to primates: a subclade that is way more diverse than the rest of the clade put together.

It’s starting to look like an extreme historical accident that Camarasaurus, diplodocines and brachiosaurids — all temporally and/or geographically restricted groups — were the first well-known sauropods, and for decades defined our notion of what sauropods were like. Meanwhile, the much more widespread and long-surviving rebbachisaurs and titanosaurs were poorly understood until really the last 25 years or so. For the first century of sauropodology, our ideas about sauropods were driven by weird, comparatively short-lived outliers.

That our appreciation of titanosaur diversity has come so late says something about how our discovery of the natural world is more to do with geopolitics and the quirks of exploration than what’s actually out there. Sauropods were defined by diplodocids for so long because that’s what happened to be in the ground in the exposed rocks of North America, and that’s where the well-funded museums and expeditions were.

We at SV-POW! towards have often wondered how different our idea of what dinosaurs even were would be if the Liaoning deposits had been available to Buckland, Mantell, and Owen. It seems like that unavoidable that, if they’d first become familiar with feathered but osteologically aberrant (by modern standards) birds, one of two things would have happened. Either they would either have never coined the term “Dinosauria” at all, recognizing that Megalosaurus (and later Allosaurus and Tyrannosaurus) were just big versions of their little feathered ur-birds. Or they would have included Dinosauria as a primitive subclass of Aves.


  • González Riga, Bernardo J., Philip D. Mannion, Stephen F. Poropat, Leonardo D. Ortiz David and Juan Pedro Coria. 2018. Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships. Zoological Journal of the Linnean Society, 46 pages, 28 figures. doi:10.1093/zoolinnean/zlx103
  • Taylor, Michael P., and Mathew J. Wedel. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36. 41 pages, 11 figures, 3 tables. doi:10.7717/peerj.36


Note. This post contains material from all three of us (Darren included), harvested from an email conversation.