Click to titanosaurize. Trust me.

I was in Philadelphia a couple of weeks ago to work with Liguo Li, of Yongjinglong fame, and I took a day to run up to New York for a quick day’s work at the American Museum of Natural History. It was my first time visiting since the cast skeleton of Patagotitan went up, so it was my first chance to see that beast in the flesh (so to speak). The pano up top is mine, but the other two photos here are by Liguo. I’m writing with my thoughts on the mount.


  • It’s big.
  • You can walk all the way around it, with no glass in the way.
  • It’s very convincing. The casting job on the real elements is superb, with all of the cracks and so on faithfully recorded. And the vertebrae they had to sculpt look pretty good.
  • The spotlights aimed at the neck cast these immense shadows of the cervical vertebrae on the far wall, which is cool (see below).
  • Now the AMNH has mounted skeletons of Brontosaurus (or some apatosaurine at any rate), Barosaurus, Kaatedocus (masquerading as a juvenile Barosaurus in the rotunda), and Patagotitan – that’s pretty not bad. I’m hard pressed to think of another museum in the Western Hemisphere with so many mounted sauropod skeletons. Carnegie, maybe? Someone help me out, here.


  • In striking contrast to the well-lit, mostly-white aesthetic of the rest of the fossil halls, the orientation gallery holding Patagotitan is mostly in near-Stygian darkness. Shoot in HDR mode if you can.
  • The head poking out into the hallway is a nice trick (see also: Sauroposeidon at the Oklahoma Museum of Natural History), but it means that one of the focal bits of the animal is in a different lighting regime, which makes photography even trickier than it might otherwise have been.
  • The mount feels a bit…cramped by the geometry of the room. Of the AMNH mounted sauropods, it’s easily in the worst space. If you ask me, they should have dethroned Barosaurus from the rotunda (religious commitments notwithstanding) and put Patagotitan there. The Patagotitan mount that is going in Stanley Field Hall at the Field Museum is going to look much more impressive just because of the setting.

In all, not bad, could be better. It was fun for me because the longest cervicals of Sauroposeidon are veeerrry slightly longer than the longest of Patagotitan, and now that Sauroposeidon is coming out as a titanosaur in most analyses…it might have been friggin’ immense.

So, yeah, go see Patagotitan, and all the other good stuff on display at the AMNH.

For more posts on Patagotitan, see:


Back in 2009, I posted on a big cervical series discovered in Big Bend National Park. Then in 2013 I posted again about how I was going to the Perot Museum in Dallas to see that cervical series, which by then was fully prepped and on display but awaiting a full description. Ron Tykoski and Tony Fiorillo (2016) published that description a couple of years ago, and after almost five years it’s probably time I posted an update.

I did visit the Perot Museum in 2013 and Ron and Tony kindly let me hop the fence and get up close and personal with their baby. I got a lot of nice photos and measurements of the big specimen. It’s an impressive thing. Compared to the other big sauropod cervicals I’ve gotten to play with, these vertebrae aren’t all that long – the two longest centra are about 80cm, compared to ~120cm for Sauroposeidon, Puertasaurus, and Patagotitan, and 137cm for Supersaurus (more details here) – but they are massive. According to the table of measurements (yay!) in Tykoski and Fiorillo (2016), which accord well with the measurements I took when I was there, the last vert is 117.5cm tall from the bottom of the cervical rib to the top of the neural spine, 98.4cm wide across the diapophyses, and has a cotyle measuring 29cm tall by 42cm wide. Here it is with me for scale:

I guarantee you, standing next to that thing and imagining it being inside the neck of a living animal is a breathtaking experience.

I failed in my mission in one way. In a comment on my 2013 post, I said, “I’ll try to get some good lateral views of the mount with as little perspective as possible.” But it can’t be done – the geometry of the room and the size of the skeleton don’t allow it, as Ron noted in the very next comment. There is one place in the exhibit hall where you can get the whole skeleton into the frame, and that’s a sort of right anterolateral oblique view. Here’s my best attempt:

So, this is an awesome specimen and you should go see it. As you can see from the photos, the vertebrae are right on the other side of the signage, with no glass between you and them, so you can see a lot. The rest of the exhibits are top notch as well. Definitely worth a visit if you find yourself within striking distance of Dallas.


Tykoski, R.S. and Fiorillo, A.R. 2016. An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America’s last giant sauropod. Journal of Systematic Palaeontology 15(5):339-364.

There’s a new paper out, describing the Argentinian titanosaur Mendozasaurus in detail (Gonzalez Riga et al. 2018): 46 pages of multi-view photos, tables of measurement, and careful, detailed description and discussion. But here’s what leapt out at me when I skimmed the paper:

Gonzalez Riga et al. (2018: figure 6). Mendozasaurus neguyelap cervical vertebra (IANIGLA-PV 076/1) in (A) anterior, (B) left lateral, (C) posterior, (D) right lateral, (E) ventral and (F) dorsal views. Scale bar = 150 mm. Sorry it’s monochrome, but that’s how it appears in the paper.

Just look at that thing. It’s ridiculous. In our 2013 PeerJ paper “Why Giraffes have Short Necks” (Taylor and Wedel 2013), we included a “freak gallery” as figure 7: five very different sauropod cervicals:

Taylor and Wedel (2013: figure 7). Disparity of sauropod cervical vertebrae. 1, Apatosaurus “laticollis” Marsh, 1879b holotype YPM 1861, cervical ?13, now referred to Apatosaurus ajax (see McIntosh, 1995), in posterior and left lateral views, after Ostrom & McIntosh (1966, plate 15); the portion reconstructed in plaster (Barbour, 1890, figure 1) is grayed out in posterior view; lateral view reconstructed after Apatosaurus louisae (Gilmore, 1936, plate XXIV). 2, “Brontosaurus excelsus” Marsh, 1879a holotype YPM 1980, cervical 8, now referred to Apatosaurus excelsus (see Riggs, 1903), in anterior and left lateral views, after Ostrom & McIntosh (1966, plate 12); lateral view reconstructed after Apatosaurus louisae (Gilmore, 1936, plate XXIV). 3, “Titanosaurus” colberti Jain & Bandyopadhyay, 1997 holotype ISIR 335/2, mid-cervical vertebra, now referred to Isisaurus (See Wilson & Upchurch, 2003), in posterior and left lateral views, after Jain & Bandyopadhyay (1997, figure 4). 4, “Brachiosaurus” brancai paralectotype MB.R.2181, cervical 8, now referred to Giraffatitan (see Taylor, 2009), in posterior and left lateral views, modified from Janensch (1950, figures 43–46). 5, Erketu ellisoni holotype IGM 100/1803, cervical 4 in anterior and left lateral views, modified from Ksepka & Norell (2006, figures 5a–d).

But this Mendozasaurus vertebra is crazier than any of them, with its tiny centrum, its huge, broad but anteroposteriorly flattened neural spine, and its pronounced lSPRLs.

I just don’t know what to make of this, and neither does Matt. And part of the reason for this may be that neither of us has had that much to do with titanosaurs. As Matt said in email, “Those weird ballooned-up neural spines in titanosaurs kind of freak me out.” And I could not agree more.

And of course as sauropodologists, we really should familiarise ourselves with titanosaurs. There are a lot of them, and they account for a lot of sauropod evolution. Someone recently made the point, either in an SV-POW! comment or on Facebook, that titanosaurs may be to sauropods what monkeys and apes are to primates: a subclade that is way more diverse than the rest of the clade put together.

It’s starting to look like an extreme historical accident that Camarasaurus, diplodocines and brachiosaurids — all temporally and/or geographically restricted groups — were the first well-known sauropods, and for decades defined our notion of what sauropods were like. Meanwhile, the much more widespread and long-surviving rebbachisaurs and titanosaurs were poorly understood until really the last 25 years or so. For the first century of sauropodology, our ideas about sauropods were driven by weird, comparatively short-lived outliers.

That our appreciation of titanosaur diversity has come so late says something about how our discovery of the natural world is more to do with geopolitics and the quirks of exploration than what’s actually out there. Sauropods were defined by diplodocids for so long because that’s what happened to be in the ground in the exposed rocks of North America, and that’s where the well-funded museums and expeditions were.

We at SV-POW! towards have often wondered how different our idea of what dinosaurs even were would be if the Liaoning deposits had been available to Buckland, Mantell, and Owen. It seems like that unavoidable that, if they’d first become familiar with feathered but osteologically aberrant (by modern standards) birds, one of two things would have happened. Either they would either have never coined the term “Dinosauria” at all, recognizing that Megalosaurus (and later Allosaurus and Tyrannosaurus) were just big versions of their little feathered ur-birds. Or they would have included Dinosauria as a primitive subclass of Aves.


  • González Riga, Bernardo J., Philip D. Mannion, Stephen F. Poropat, Leonardo D. Ortiz David and Juan Pedro Coria. 2018. Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships. Zoological Journal of the Linnean Society, 46 pages, 28 figures. doi:10.1093/zoolinnean/zlx103
  • Taylor, Michael P., and Mathew J. Wedel. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36. 41 pages, 11 figures, 3 tables. doi:10.7717/peerj.36


Note. This post contains material from all three of us (Darren included), harvested from an email conversation.


When I was nine, a copy of Don Glut’s The New Dinosaur Dictionary turned up in my local Waldenbooks. It wasn’t my first dinosaur book, by far – I’d been a dinosaurophile since the age of three. But The New Dinosaur Dictionary was different.

Up to that point, I had subsisted on a heavy diet of kids’ dino books and the occasional article in National Geographic and Ranger Rick. The kids’ books were aimed at kids and the magazine articles were pitched at an engagingly popular level. I didn’t understand every word, but they were clearly written for curious layfolk, not specialists.

A typical spread from The New Dinosaur Dictionary (Glut, 1982). The armored sauropod blew my young mind.

The New Dinosaur Dictionary was something else entirely. It had photos of actual dinosaur bones and illustrations of skeletons with cryptic captions like, “Skeleton of Daspletosaurus torosus. (After Russell)”. Okay, clearly this Russell cove was out there drawing dinosaur skeletons and this book had reproduced some of them. But nobody I knew talked like that, and the books I had access to up to that point held no comparable language.

The New Dinosaur Dictionary (Glut, 1982: p. 271)

Then there was stuff like this: “The so-called Von Hughenden sauropod restored as a brachiosaurid by Mark Hallett”. A chain of fascinating and pleasurable ideas detonated in my brain. “The so-called” – say what now? Nobody even knew what to call this thing? Somehow I had inadvertently sailed right to the edge of human knowledge of dinosaurs, and was peering out into taxa incognita. “Restored as a brachiosaurid” – so this was just one of several possible ways that the animal might have looked. Even the scientists weren’t sure. This was a far cry from the bland assurances and blithely patronizing tones of all my previous dinosaur books.

“By Mark Hallett.” I didn’t know who this Hallett guy was, but his art was all over the book, along with William Stout and some guy named Robert T. Bakker and a host of others who were exploding my conception of what paleo art could even be. Anyway, this Mark Hallett was someone to watch, not only because he got mentioned by name a lot, but because his art had a crisp quality that teetered on some hypercanny ridge between photorealism and scribbling. His sketches looked like they might just walk off the page.

In case that line about scribbling sounds dismissive: I have always preferred sketches by my favorite artists to their finished products. The polished works are frequently inhumanly good. They seem to have descended in a state of completed perfection from some divine realm, unattainable by mere mortals. Whereas sketches give us a look under the hood, and show how a good artist can conjure light, shadow, form, weight, and texture from a few pencil strokes. Put it this way: I am anatomist by temperament first, and by training and occupation second. Of course I want to see how things are put together.

The New Dinosaur Dictionary (Glut, 1982: p. 75)

Anyway, The New Dinosaur Dictionary was something completely new in my experience. It wasn’t aimed at kids and written as if by kids, like lots of kids’ books. It wasn’t even written by adults talking down (deliberately or inadvertently) to kids, or trying to reach a wide audience that might include kids. It was written by an adult, aiming at other adults. And it was admitting in plain language that we didn’t know everything yet, that there were lots of animals trembling on the outer threshold of scientific knowledge. I didn’t understand half of it – I was down in an ontogenetic trench, looking up as these packets of information exploded like fireworks over my head.

In Seeing In the Dark, the best book about why you should go out stargazing for yourself, Timothy Ferris writes about growing up on Florida’s Space Coast in the early 1960s, and watching the first generation of artificial satellites pass overhead:

I felt like an ancient lungfish contemplating the land from the sea. We could get up there.

That’s precisely the effect that The New Dinosaur Dictionary had on me: I could get up there. Maybe not immediately. But there were steps, bodies of knowledge that could be mastered piecemeal, and most of all, mysteries to be resolved. The book itself was like a sketch, showing how from isolated and broken bones and incomplete skeletons, scientists and artists reconstructed the world of the past, one hypothesis at a time. Now I take it for granted, because I’ve been behind the curtain for a couple of decades. But to my 9-year-old self, it was revolutionary.

This has all come roaring back because of something that came in the mail this week. Or rather, something that had been waiting in the mailroom for a while, that I finally picked up this week: a package from Mark Hallett, enclosing a copy of his 2018 dinosaur calendar. And also this:


An original sketch, which he gave to me as a Christmas present. The published version appears on one of the final pages of our book, where we discuss the boundaries between the known – the emerging synthesis of sauropod biology that we hoped to bring to a broader audience by writing the book in the first place – and the unknown – the enduring mysteries that Mark and I think will drive research in sauropod paleobiology for the next few decades. Presented without a caption or commentary, the sketch embodies sauropods as we see them: emerging from uncertainty and ignorance one hard-won line at a time, with ever-increasing solidity.

Thank you, Mark, sincerely. That sketch, what it evokes, both for me now and for my inner 9-year-old – you couldn’t have chosen a better gift. And I couldn’t be happier. Except perhaps to someday learn that our book exploded in the mind of a curious kid the way that The New Dinosaur Dictionary did for me 34 years ago, a time that now seems as distant and romantic as the primeval forests of the Mesozoic.

Here’s a bunch of cool stuff that is either available now or happening soon:

Sauropod Dinosaurs book excerpt in Prehistoric Times

Been on the fence about the sauropod book Mark Hallett and I wrote? Now you can try before you buy – our chapter on titanosaurs is reprinted in the new issue of Prehistoric Times magazine. I know it’s on newsstands because I picked it up at the local Barnes & Noble yesterday. You can also buy the issue from the PT website, physically or in digital form, solo or as part of a subscription. Many thanks to PT editor and publisher Mike Fredericks for the visibility, the staff at Johns Hopkins University Press for permission, and most of all to Mark Hallett for making it happen. We hope you enjoy it.

Get more sauropods in Mark Hallett’s 2018 dinosaur calendar

Mark has a dinosaur calendar out from Pomegranate, and I’m happy to say that sauropods are featured 5 out of 12 months. The calendar has a nice mix of Hallett classics and some newer works, including the cover art from our book, as shown above. Get it direct from Pomegranate or from Amazon.

Vicki’s public talk on forensic anthropology in December

My better half, anthropologist and author Vicki Wedel, is giving a public talk about her work on the evening of Thursday, December 14, at the Western Science Center in Hemet, California. Her title will be, “Bones, ballistics, and blunt force trauma.” I assume the talk will start at 6:00, but check the WSC website for details. The painted skull above is from the natural history museum in Vienna, and it doesn’t have any connection to the talk other than Vicki thought it was rad and I needed a skull to illustrate the post. For more on Vicki and her work, see these posts: cold case, book.


UPDATE: Final details on Vicki’s talk are out. It will start at 6:00, she’ll be signing copies of her book, Broken Bones: Anthropological Analysis of Blunt Force Trauma, and admission is $5.

My public talk on sauropods and whales in January

In January it will be my turn to give a talk at the Western Science Center. I’m on for the evening of Thursday, January 18. Title is not quite finalized but it will probably something along the lines of, “Dinosaurs versus whales: what is the largest animal of all time, and how do we know?” That’s me with the gray whale skeleton at Long Marine Lab in Santa Cruz, back in 2006. I was helping Nick Pyenson measure whales, back when we were both grad students. Ancient blog posts about that here: gray, blue.

See me in Seattle at Norwescon over Easter weekend

If you want to see me star-struck, come to Norwescon, home of the Philip K. Dick Award, next spring, where I’ll be rubbing shoulders with some vastly more famous people. Hugo, Nebula, and World Fantasy Award winner Ken Liu will be the Writer Guest of Honor, legendary SF&F visionary Wayne Douglas Barlowe Hugo- and World Fantasy Award-winning artist Galen Dara will be the Artist Guest of Honor, Green Ronin is the Spotlight Publisher, and, er, I will be the Science Guest of Honor. Yes, I’m alert to both the honor and the incongruity of the thing. When I’m not Freaking. Out. about hanging with two of my favorite creators, I’ll probably be giving talks on dinosaurs and astronomy (my other thing) and participating on some panels and signing books. I’ll try not to disappoint.

A bunch of stuff, loosely organized by theme.


First up, I need to thank Brian Switek, who invited me to comment on Patagotitan for his piece at Smithsonian. I think he did a great job on that, arguably the best of any of the first-day major media outlet pieces. And it didn’t go unnoticed – his article was referenced at both the Washington Post and NPR (and possibly other outlets, those are the two I know of right now). I don’t think my quotes got around because they’re particularly eloquent, BTW, but rather because reporters tend to like point-counterpoint, and I was apparently the most visible counterpoint. They probably would have done the same if I’d been talking complete nonsense (which, to be fair, some people may think I was).

Paleobiology vs Records

The most commonly reproduced quote of mine is this one, originally from Brian’s piece:

I think it would be more accurate to say that Argentinosaurus, Puertasaurus and Patagotitan are so similar in size that it is impossible for now to say which one was the largest.

That may seem at odds with the, “Well, actually…[pushes glasses up nose]…Argentinosaurus was still biggest” tack I’ve taken both in my post yesterday and on Facebook. So let me elaborate a little.

There is a minor, boring point, which is that when I gave Brian that quote, I’d seen the Patagotitan paper, but not the Electronic Supplementary Materials (ESM), so I knew that Patagotitan was about the same size as the other two (and had known for a while), but I hadn’t had a chance to actually run the numbers.

The much more interesting point is that the size differences between Argentinosaurus, Puertasaurus, and Patagotitan are astonishingly small. The difference between a 2.5m femur and a 2.4m one is negligible, ditto for vertebrae with centra 59cm and 60cm in diameter. OMNH 1331, the biggest centrum bit from the giant Oklahoma apatosaur, had an intact max diameter of 49cm, making it 26% larger in linear terms than the next-largest apatosaur. The centra of these giant South American titanosaurs are more than 20% bigger yet than OMNH 1331, just in linear terms. That’s crazy.

It’s also crazy that these three in particular – Argentinosaurus, Puertasaurus, and Patagotitan – are so similar in size. Dinosaur developmental programs were ‘messy’ compared to those of mammals, both in having weird timings for things like onset of reproduction, and in varying a lot among closely related taxa. Furthermore, sauropod population dynamics should have been highly skewed toward juveniles and subadults. So is the near-equality in size among Argentinosaurus, Puertasaurus, and Patagotitan just a coincidence, or does it mean that something weird was going on? There’s really no third option. I mean, even if some kind of internal (biomechanical or physiological) or external (ecological, food or predation) constraint forced those three to the same adult body size, it’s weird then that we’re finding only or at least mostly near-max-size adults. (If the available specimens of these three aren’t near-max-size, then any hypothesis that they’re forced to the same size by constraints is out the window, and we’re back to coincidence.)


With all that said, the title of “world’s largest dinosaur” is not handed out for effort expended, number of specimens collected, skeletal completeness, ontogenetic speculation, or anything other than “the dinosaur with the largest measured elements”. And that is currently Argentinosaurus. So although for any kind of paleobiological consideration we can currently consider Argentinosaurus, Puertasaurus, and Patagotitan to all be about the same size – and Alamosaurus, Paralititan, Notocolossus, and probably others I’ve forgotten should be in this conversation – anyone wanting to dethrone Argentinosaurus needs to actually show up with bigger elements.

So, if you’re interested in paleobiology, it’s fascinating and frankly kind of unnerving that so many of these giant titanosaurs were within a hand-span of each other in terms of size. Patagotitan is one more on the pile – and, as I said yesterday, exciting because it’s so complete.

But if you want to know who holds the crown, it’s still Argentinosaurus.


In a comment on the last post, Andrea Cau made an excellent point that I am just going to copy here entire:

Even Paralititan stromeri humerus is apparently larger than Patagotitan humerus (169 cm vs 167.5 cm). I know humerus length alone is bad proxy of body size, but at least this shows that even in that bone Patagotitan is just another big titanosaur among a well known gang of titans, not a supersized one.

That made me want to start a list of the longest sauropod humeri. Here goes – if I missed anyone or put down a figure incorrectly, I’m sure you’ll let me know in the comments.

  • Giraffatitan: 213cm
  • Brachiosaurus: 203cm
  • Ruyangosaurus: 190cm (estimated from 135cm partial)
  • Turiasaurus: 179cm
  • Notocolossus: 176cm
  • Paralititan: 169cm
  • Patagotitan: 167.5cm
  • Dreadnoughtus: 160cm
  • Futlognkosaurus: 156cm

Admittedly the Patagotitan humerus is from a paratype and not from the largest individual, but that is true for some others on the list, including Giraffatitan. And we have no humeri from Argentinosaurus, Puertasaurus, and some other giants.

Dorsal Vertebrae

A couple of further thoughts on how the dorsal vertebrae of Patagotitan compare to those of Argentinosaurus. First, now that I’ve had some time to think about it, I have a hard time seeing how the dorsal polygon method used by Carballido et al. in the Patagotitan paper has any biological meaning. In their example figure, the polygon around the Puertasaurus vertebra is mostly full of bone, and the one around Patagotitan has a lot of empty space. It’s easy to imagine an alternative metric, like “area of the minimum polygon actually filled by bone”, that would lead to a different ‘winner’. But that wouldn’t mean much, either.

Something that probably does have a real and important biomechanical meaning is the surface area of the articular face of the centrum, because that’s the area of bone that has to bear the compressive load, which is directly related to the animal’s mass. The biggest Patagotitan centrum is that of MPEF-PV 3400/5, which is at least a local maximum since has smaller centra both ahead and behind. The posterior face measures 59cm wide by 42.5cm tall. Abstracted as an ellipse, which may not be perfectly accurate, those measurements give a surface area of (pi)(29.5)(21.25)=1970 cm^2. For Argentinosaurus, the largest complete centrum has a posterior face measuring 60cm wide by 47cm tall (Bonaparte and Coria 1993: p. 5), giving an elliptical surface area of (pi)(30)(23.5)=2210 cm^2. (I’d use hi-res images of the centra to measure the actual surface areas if I could, but AFAIK those images either don’t exist or at least have not yet been made public, for either taxon.) So although the Argentinosaurus dorsal seems like it is only a bit bigger in linear terms, it’s 12% larger in surface area, and that might actually be a meaningful difference.

Cervical Vertebrae

One thing I haven’t commented on yet – Patagotitan is the newest member of the “world’s longest vertebrae” club. The longest Patagotitan cervical, MPEF-PV 3400/3, is listed in the ESM as having a centrum length of 120cm, but it’s also listed as incomplete. In the skeletal recon in the paper, the centrum is colored in as present, but the neural spine is missing. So is the centrum complete in terms of length? I don’t think it’s clear right now.

Anyway, here’s the current rundown of the longest cervical centra of sauropods (and therefore, the longest vertebrae among animals):

  • BYU 9024, possibly referable to Supersaurus or Barosaurus: 137cm
  • Price River 2 titanosauriform: 129cm
  • OMNH 53062, Sauroposeidon holotype: 125cm
  • KLR1508-77-2, Ruyangosaurus giganteus referred specimen: 124cm
  • MPEF-PV 3400/3, Patagotitan holotype: 120cm (+?)
  • MPM 10002, Puertasaurus holotype: 118cm

You may be surprised to see the Price River 2 cervical in there. It was reported in an SVP abstract a few years ago (I’ll dig up that ref and update this post), and Mike and I saw it last year on the Sauropocalypse. We measured the centrum at 129cm, making it just a bit longer than the longest centrum of Sauroposeidon, and therefore the second-longest vertebra of anything ever.

Aside – I’m probably getting a reputation as a big ole meanie when it comes to debunking “world’s largest dinosaur” claims. If I’m willing to take the lead in kicking my own dinosaur down the ladder, don’t expect me to be kind to yours. I follow where the numbers lead.

Now, here’s an interesting thing – now that Sauroposeidon is coming out as a basal titanosaur, rather than a brachiosaur, it might not have been a skinny freak. The 120cm cervical of Patagotitan makes the 125cm cervical of Sauroposeidon and the 129cm cervical from Price River 2 look even more tantalizing. Maybe it’s super-giant sauropods all the way down.

“But wait, Matt”, I hear you thinking. “Every news agency in the world is tripping over themselves declaring Patagotitan the biggest dinosaur of all time. Why are you going in the other direction?”

Because I’ve been through this a few times now. But mostly because I can friggin’ read.

Maximum dorsal centrum diameter in Argentinosaurus is 60cm (specimen MCF-PVPH-1, Bonaparte and Coria 1993). In Puertasaurus it is also 60cm (MPM 10002, Novas et al. 2005). In Patagotitan it is 59cm (MPEF-PV 3400/5, Carballido et al. 2017). (For more big centra, see this post.)

Femoral midshaft circumference is 118cm in an incomplete femur of Argentinosaurus estimated to be 2.5m long when complete (Mazzetta et al. 2004). A smaller Argentinosaurus femur is 2.25m long with a circumference of 111.4cm (Benson et al. 2014). The largest reported femur of Patagotitan, MPEF-PV 3399/44, is 2.38m long and has a circumference of either 101cm (as reported in the Electronic Supplementary Materials to Carballido et al 2017) or 110cm (as reported in the media in 2014*).

TL;DR: 60>59, and 118>111>110>101, and in both cases Argentinosaurus > Patagotitan, at least a little bit.

Now, Carballido et al (2017) estimated that Patagotitan was sliiiiightly more massive than Argentinosaurus and Puertasaurus by doing a sort of 2D minimum convex hull dorsal vertebra area thingy, which the Patagotitan vertebra “wins” because it has a taller neural spine than either Argentinosaurus or Puertasaurus, and slightly wider transverse processes than Argentinosaurus (138cm vs 128cm) – but way narrower transverse processes than Puertasaurus (138cm vs 168cm). But vertebrae with taller or wider sticky-out bits do not a more massive dinosaur make, otherwise Rebbachisaurus would outweigh Giraffatitan.

Now, in truth, it’s basically a three-way tie between Argentinosaurus, Puertasaurus, and Patagotitan. Given how little we have of the first two, and how large the error bars are on any legit size comparison, there is no real way to tell which of them was the longest or the most massive. Still, to get to the conclusion that Patagotitan was in any sense larger than Argentinosaurus you have to physically drag yourself over the following jaggedly awkward facts:

  1. The weight-bearing parts of the anterior dorsal vertebrae are larger in diameter in both Argentinosaurus and Puertasaurus than in Patagotitan. Very slightly, but still, Patagotitan is the smallest of the three.
  2. The femora of Argentinosaurus are fatter than those of Patagotitan, even at shorter length. The biggest femora of Argentinosaurus are longer, too.

So all of the measurements of body parts that have to do with supporting mass are still larger in Argentinosaurus than in Patagotitan.

Now, it is very cool that we now have a decent chunk of the skeleton of a super-giant titanosaur, instead of little bits and bobs. And it’s nice to know that the numbers reported in the media back in 2014 turned out to be accurate. But Patagotitan is not the “world’s largest dinosaur”. At best, it’s the third-largest contender among near equals.

Parting shot to all the science reporters who didn’t report the same numbers I did here: instead of getting hype-notized by assumption-laden estimates, how about doing an hour’s worth of research making the most obvious possible comparisons?

Almost immediate UPDATE: Okay, that parting shot wasn’t entirely fair. As far as I know, the measurements of Patagotitan were not available until the embargo lifted. Which is in itself odd – if someone claims to have the world’s largest dinosaur, but doesn’t put any measurements in the paper, doesn’t that make your antennae twitch? Either demand some measurements so you can make those obvious comparisons, or approach with extreme skepticism – especially if the “world’s largest dino” claim was pre-debunked three years ago!

* From this article in the Boston Globe:

Paleobiologist Paul Upchurch of University College London believes size estimates are more reliable when extrapolated from the circumference of bones.

He said this femur is a whopping 43.3 inches around, about the same as the Argentinosaurus’ thigh bone.

‘‘Whether or not the new animal really will be the largest sauropod we know remains to be seen,’’ said Upchurch, who was not involved in this discovery but has seen the bones first-hand.

Some prophetically appropriate caution from Paul Upchurch there, who has also lived through a few of these “biggest dinosaur ever” bubbles.