This is super cool: my friend and lead author on the new saltasaur pneumaticity paper, Tito Aureliano, made a short (~6 min) video about the fieldwork that Aline Ghilardi and Marcelo Fernandes and their team — many of whom are authors on the new paper — have been doing in Brazil, and how it led to the discovery of a new, tiny titanosaur, and how that led to the new paper. It’s in Portuguese, but with English subtitles, just hit the CC button.

Previous post:

Reference

 

Posterior dorsal vertebra of the Upper Cretaceous nanoid saltasaurid LPP-PV-0200. Three-dimensional reconstruction from CT scan in left lateral view (A). Circle and rectangle show sampling planes and the respective thin sections are in (B,C). ce centrum, ns neural spine, pn pneumatopore, poz postzygaphophysis, prz prezygapophysis. Scale bar in (A) 10 cm; in (B,C) 1 cm. Computed tomography data processed with 3D Slicer version 4.10.

Well, this is a very pleasant surprise on the last day of the semester:

Tito Aureliano, Aline M. Ghilardi, Bruno A. Navarro, Marcelo A. Fernandes, Fresia Ricardi-Branco, & Mathew J. Wedel. 2021. Exquisite air sac histological traces in a hyperpneumatized nanoid sauropod dinosaur from South America. Scientific Reports 11: 24207.

You may justly be wondering what I’m doing on a paper on a South American titanosaur. It came about like this:

  • I wrote to Tito Aureliano back in March to congratulate him on his 2019 paper, “Influence of taphonomy on histological evidence for vertebral pneumaticity in an Upper Cretaceous titanosaur from South America”, which I’d just reread, and was impressed by;
  • he told me he was working on a manuscript on saltasaur pneumaticity and would be grateful for my thoughts;
  • I sent him said thoughts, with no strings attached;
  • he asked me if I’d be willing to come on the project as a junior author;
  • I said yes;

and a few months later, here we are.

Dorsal vertebra internal structures of LPP-PV-0200. Reconstructed tomography model in distal (A) and right lateral (B) views illustrating subvertical tangential CT scan slices in false color (1–9). Images show that only a few structures had survived diagenesis which restricted the assessment of the internal architecture to limited spaces. Lighter blue and green indicate lower densities (e.g., pneumatic cavities). Purple and darker blue demonstrate denser structures (e.g., camellate bone). Dashed lines indicate internal plates of bone that sustain radial camellae. ce centrum, cc circumferential chambers, cml camellae, hc-cml ‘honeycomb’ camellae, ns neural spine, pf pneumatic foramen, pn pneumatopore, pacdf parapophyseal-centrodiapophyseal fossa, pocdf postzygapophyseal-centrodiapophyseal fossa, rad radial camellae. Computed tomography data processed with 3D Slicer version 4.10.

My correspondence to Tito basically boiled down to, “All the things you’ve identified in your CT scans are there, but there are also a few more exciting things that you might want to draw attention to” — specifically circumferential and radial camellae near the ends and edges of the centrum, and pneumatic chambers communicating with the neural canal, which were previously only published in Giraffatitan (Schwarz and Fritsch 2006; see Atterholt and Wedel 2018 and this post for more). The internal plates of bone inside the cotyle, which help frame the radial camellae, were first noted by Woodward and Lehman (2009), and discussed in this post.

I can’t think of any reason not to just post the notes I sent to Tito back in March, so here you go:

Wedel suggestions for Aureliano et al Saltasauridae dorsal

I may have more to say about this in the coming days, but at the moment I have two extant dinosaurs — ducks, to be precise — smoking on the grill, and I need to get back to them. The new paper is open access, free to the world (link), so go have fun with it.

UPDATE the next day: here’s another post on the new paper:

References

FMNH P13018 with me for scale. Photo by Holly Woodward.

Some of the Burpee Museum folks and PaleoFest speakers visited the Field Museum of Natural History in Chicago after the 2020 ‘Fest. I hadn’t been there since 2012, and a lot had changed. More on that in future posts, maybe. Here I am with FMNH 13018, a right femur referred by von Huene (1929) to Argyrosaurus superbus (note, though, that Mannion and Otero 2012 considered this specimen to be Titanosauria indet., hence the hedge in the title of the post). It’s 211cm long, which is pretty darn big but still well short of the record.

Speaking of the record, here’s a list of the largest sauropod femora (as always, updates in the comments are welcome!):

  1. 250cm – Argentinosaurus huinculensis, MLP-DP 46-VIII-21-3 (estimated when complete)
  2. 238cm – Patagotitan mayorum, MPEF-3399/44
  3. 236cm – Patagotitan mayorum, MPEF-PV 3400/27
  4. 235cm – Patagotitan mayorum, MPEF-PV 3400/27
  5. 235cm – “Antarctosaurus” giganteus, MLP 26-316
  6. 214cm – Giraffatitan brancai, XV1
  7. 211cm – cf. Argyrosaurus superbus, FMNH P13018
  8. 203cm – Brachiosaurus altithorax, FMNH P25107
  9. 200cm – Ruyangosaurus giganteus, 41HIII -0002 (estimated when complete)
  10. 191cm – Dreadnoughtus schrani, MPM-PV 1156

The list is necessarily incomplete, because we have no preserved femora for Puertasaurus, Notocolossus, Futalognkosaurus, or the largest individuals of Sauroposeidon and Alamosaurus, all of which probably had femora in the 210-250cm range. For that matter, most elements of the giant Oklahoma apatosaurine are 25%-33% larger than the equivalent bones in CM 3018, which implies a femur length of 223-237cm (scaled up from the 178.5cm femur of CM 3018). I’m deliberately not dealing with Maraapunisaurus or horrifying hypothetical barosaurs here.

In any case, it’s still a prodigious bone, and well worth spending a moment with the next time you’re at the Field Musuem.

References

  • Mannion, P.D. and Otero, A., 2012. A reappraisal of the Late Cretaceous Argentinean sauropod dinosaur Argyrosaurus superbus, with a description of a new titanosaur genus. Journal of Vertebrate Paleontology, 32(3):614-638.
  • Von Huene, F. 1929. Los saurisquios y ornitisquios del Creta´ceo Argentino. Anales del Museo de La Plata 3:1–196.

 

FIGURE 7.1. Pneumatic features in dorsal vertebrae of Barapasaurus (A–D), Camarasaurus (E–G), Diplodocus (H–J), and Saltasaurus (K–N). Anterior is to the left; different elements are not to scale. A, A posterior dorsal vertebra of Barapasaurus. The opening of the neural cavity is under the transverse process. B, A midsagittal section through a middorsal vertebra of Barapasaurus showing the neural cavity above the neural canal. C, A transverse section through the posterior dorsal shown in A (position 1). In this vertebra, the neural cavities on either side are separated by a narrow median septum and do not communicate with the neural canal. The centrum bears large, shallow fossae. D, A transverse section through the middorsal shown in B. The neural cavity opens to either side beneath the transverse processes. No bony structures separate the neural cavity from the neural canal. The fossae on the centrum are smaller and deeper than in the previous example. (A–D redrawn from Jain et al. 1979:pl. 101, 102.) E, An anterior dorsal vertebra of Camarasaurus. F, A transverse section through the centrum (E, position 1) showing the large camerae that occupy most of the volume of the centrum. G, a horizontal section (E, position 2). (E–G redrawn from Ostrom and McIntosh 1966:pl. 24.) H, A posterior dorsal vertebra of Diplodocus. (Modified from Gilmore 1932:fig. 2.) I, Transverse sections through the neural spines of other Diplodocus dorsals (similar to H, position 1). The neural spine has no body or central corpus of bone for most of its length. Instead it is composed of intersecting bony laminae. This form of construction is typical for the presacral neural spines of most sauropods outside the clade Somphospondyli. (Modified from Osborn 1899:fig. 4.) J, A horizontal section through a generalized Diplodocus dorsal (similar to H, position 2). This diagram is based on several broken elements and is not intended to represent a specific specimen. The large camerae in the midcentrum connect to several smaller chambers at either end. K, A transverse section through the top of the neural spine of an anterior dorsal vertebra of Saltasaurus (L, position 1). Compare the internal pneumatic chambers in the neural spine of Saltasaurus with the external fossae in the neural spine of Diplodocus shown in J. L, An anterior dorsal vertebra of Saltasaurus. M, A transverse section through the centrum (L, position 2). N, A horizontal section (L, position 3). In most members of the clade Somphospondyli the neural spines and centra are filled with small camellae. (K–N modified from Powell 1992:fig. 16.) [Figure from Wedel 2005.]

Here’s figure 1 from my 2005 book chapter. I tried to cram as much pneumatic sauropod vertebra morphology into one figure as I could. All of the diagrams are traced from pre-existing published images except the horizontal section of the Diplodocus dorsal in J, which is a sort of generalized cross-section that I based on broken centra of camerate vertebrae from several taxa (like the ones shown in this post). One thing that strikes me about this figure, and about most of the CT and other cross-sections that I’ve published or used over the years (example), is that they’re more or less bilaterally symmetrical. 

We’ve talked about asymmetrical vertebrae before, actually going back to the very first post in Xenoposeidon week, when this blog was only a month and a half old. But not as much as I thought. Given how much space asymmetry takes up in my brain, it’s actually weird how little we’ve discussed it.

The fourth sacral centrum of Haplocanthosaurus CM 879, in left and right lateral view (on the left and right, respectively). Note the distinct fossa under the sacral rib attachment on the right, which is absent on the left.

Also, virtually all of our previous coverage of asymmetry has focused on external pneumatic features, like the asymmetric fossae in this sacral of Haplocanthosaurus (featured here), in the tails of Giraffatitan and Apatosaurus (from Wedel and Taylor 2013b), and in the ever-popular holotype of Xenoposeidon. This is true not just on the blog but also in our most recent paper (Taylor and Wedel 2021), which grew out of this post.

Given that cross-sectional asymmetry has barely gotten a look in before now, here are three specimens that show it, presented in ascending levels of weirdness.

First up, a dorsal centrum of Haplocanthosaurus, CM 572. This tracing appeared in Text-fig 8 in my solo prosauropod paper (Wedel 2007), and the CT scout it was traced from is in Fig 6 in my saurischian air-sac paper (Wedel 2009). The section shown here is about 13cm tall dorsoventrally. The pneumatic fossa on the left is comparatively small, shallow, and lacks very distinct overhanging lips of bone. The fossa on the right is about twice as big, it has a more distinct bar of bone forming a ventral lip, and it is separated from the neural canal by a much thinner plate of bone. The fossa on the left is more similar to the condition in dorsal vertebrae of Barapasaurus or juvenile Apatosaurus, where as the one on the right shows a somewhat more extensive and derived degree of pneumatization. The median septum isn’t quite on the midline of the centrum, but it’s pretty stout, which seems to be a consistent feature in presacral vertebrae of Haplocanthosaurus.

 

Getting weirder. Here’s a section through the mid-centrum of C6 of CM 555, which is probably Brontosaurus parvus. That specific vert has gotten a lot of SV-POW! love over the years: it appears in several posts (like this one, this one, and this one), and in Fig 19 in our neural spine bifurcation paper (Wedel and Taylor 2013a). The section shown here is about 10cm tall, dorsoventrally. In cross-section, it has the classic I-beam configuration for camerate sauropod vertebrae, only the median septum is doing something odd — rather than attaching the midline of the bony floor of the centrum, it’s angled over to the side, to attach to what would normally be the ventral lip of the camera. I suspect that it got this way because the diverticulum on the right either got to the vertebra a little ahead of the one on the left, or just pneumatized the bone faster, because the median septum isn’t just bent, even the vertical bit is displaced to the left of the midline. I also suspect that this condition was able to be maintained because the median septa weren’t that mechanically important in a lot of these vertebrae. We use “I-beam” as a convenient shorthand to describe the shape, but in a metal I-beam the upright is as thick or thicker than the cross bits. In contrast, camerate centra of sauropod vertebrae could be more accurately described as a cylinders or boxes of bone with some holes in the sides. I think the extremely thin median septum is just a sort of developmental leftover from the process of pneumatization.

EDIT 3 days later: John Whitlock reminded me in the comments of Zurriaguz and Alvarez (2014), who looked at asymmetry in the lateral pneumatic foramina in cervical and dorsal vertebrae of titanosaurs, and found that consistent asymmetry along the cervical column was not unusual. They also explicitly hypothesized that the asymmetry was caused by diverticula on one side reaching the vertebrae earlier than diverticula on other other side. I believe they were the first to advance that idea in print (although I should probably take my own advice and scour the historical literature for any earlier instances), and needless to say, I think they’re absolutely correct.

Both of the previous images were traced from CTs, but the next one is traced from a photo of a specimen, OMNH 1882, that was broken transversely through the posterior centrum. To be honest, I’m not entirely certain what critter this vertebra is from. It is too long and the internal structure is too complex for it to be Camarasaurus. I think an apatosaurine identity is unlikely, too, given the proportional length of the surviving chunk of centrum, and the internal structure, which looks very different from CM 555 or any other apatosaur I’ve peered inside. Diplodocus and Brachiosaurus are also known from the Morrison quarries at Black Mesa, in the Oklahoma panhandle, which is where this specimen is from. Of those two, the swoopy ventral margin of the posterior centrum looks more Diplodocus-y than Brachiosaurus-y to me, and the specimen lacks the thick slab of bone that forms the ventral centrum in presacrals of Brachiosaurus and Giraffatitan (see Schwarz and Fritsch 2006: fig. 4, and this post). So on balance I think probably Diplodocus, but I could easily be wrong.

Incidentally, the photo is from 2003, before I knew much about how to properly photograph specimens. I really need to have another look at this specimen, for a lot of reasons.

Whatever taxon the vertebra is from, the internal structure is a wild scene. The median septum is off midline and bent, this time at the top rather than the bottom, the thick ventral rim of the lateral pneumatic foramen is hollow on the right but not on the left, and there are wacky chambers around the neural canal and one in the ventral floor of the centrum. 

I should point out that no-one has ever CT-scanned this specimen, and single slices can be misleading. Maybe the ventral rim of the lateral foramen is hollow just a little anterior or posterior to this slice. Possibly the median septum is more normally configured elsewhere in the centrum. But at least at the break point, this thing is crazy. 

What’s it all mean? Maybe the asymmetry isn’t noise, maybe it’s signal. We know that when bone and pneumatic epithelium get to play together, they tend to make weird stuff. Sometimes that weirdness gets constrained by functional demands, other times not so much. I think it’s very seductive to imagine sauropod vertebrae as these mechanically-optimized, perfect structures, but we have other evidence that that’s not always true (for example). Maybe as long as the articular surfaces, zygapophyses, epipophyses, neural spine tips, and cervical ribs — the mechanically-important bits — ended up in the right places, and the major laminae did a ‘good enough’ job of transmitting forces, the rest of each vertebra could just sorta do whatever. Maybe most of them end up looking more or less the same because of shared development, not because it was so very important that all the holes and flanges were in precisely the same places. That might explain why we occasionally get some really odd verts, like C11 of the Diplodocus carnegii holotype.

That’s all pretty hand-wavy and I haven’t yet thought of a way to test it, but someone probably will sooner or later. In the meantime, I think it’s valuable to just keep documenting the weirdness as we find it.

References

Figure 3. BIBE 45854, articulated series of nine mid and posterior cervical vertebrae of a large, osteologically mature Alamosaurus sanjuanensis. Series is estimated to represent the sixth to fourteenth cervical vertebrae. A, composite photo-mosaic of the cervical series in right lateral view; identification of each vertebra indicated by C6 to C14, respectively. B, line drawing based on the photo-mosaic in A. C, line drawing in B with labels shown and vertebral fossae indicated by solid grey fill; cross-hatching represents broken bone surfaces and reconstructive material. Abbreviations: C, cervical vertebra; cdf, centrodiapophyseal fossa; clf, centrum lateral fossa; pocdf, postzygapophyseal centrodiapophyseal fossa; prcdf, prezygapophyseal centrodiapophyseal fossa; prcdf1, dorsal prezygapophyseal centrodiapophyseal fossa; prcdf2, ventral prezygapophyseal centrodiapophyseal fossa; sdf, spinodiapophyseal fossa; spof, spinopostzygapophyseal fossa; sprf, spinoprezygapophyseal fossa. (Tykoski and Fiorillo 2016)

Have you been reading Justin Tweet’s series, “Your Friends the Titanosaurs“, at his awesomely-named blog, Equatorial Minnesota? If not, get on it. He’s been running the series since June, 2018, so this notice is only somewhat grotesquely overdue. The latest installment, on Alamosaurus from Texas and Mexico, is phenomenal. I have never seen another summary or review that pulled together so much of the relevant literature and explained it all so well. Seriously, that blog post deserves to be a review paper; it could be submitted pretty much as-is, although it would be even better with his two other Alamosaurus posts integrated (this one, and this one). It’s great work, is what I’m saying, and it needs to be acknowledged.

In particular, I was struck by the note by Anonymous in 1941 on the discovery of a cervical vertebra 1.2 meters long. I’d never heard of that ref, and I’ve never seen that vert, but at 120cm it would be in the top 7 longest cervical vertebrae on the planet (see the latest version of the list in this post), narrowly beating out the 118-cm cervical of Puertasaurus. In fairness, the preserved cervical of Puertasaurus is probably a posterior one, and more anterior cervicals might have been longer. Then again, in the big Alamosaurus neck the longest verts are pretty darned posterior, so…we need more Puertasaurus.

EDIT a few hours later: Thanks to the kind offices of Justin Tweet, I’ve now seen Anonymous (1941), and the exact wording is, “A single vertebra, or neck joint bone, is three feet across, only two inches less than four feet long, and in its present fossilized state weighs 600 pounds.” ‘Two inches less than four feet long’ is 46 inches or a hair under 117cm, which puts the supposed giant cervical just behind Puertasaurus after all, but still firmly in the top 10. And depending on how one interprets the passage in Anonymous (1941), it might not have been any bigger than BIBE 45854–see this comment for details.

Big cervical showdown. From the top left: BYU 9024, originally referred to Supersaurus but more likely representing a giant Barosaurus (137cm); the single available cervical of Puertasaurus (118cm); a world-record giraffe neck (2.4m); Alamosaurus referred cervical series BIBE 45854, longest centra are ~81cm; Sauroposeidon holotype OMNH 53062, longest centrum is 125cm. This image makes it very clear that whatever Sauroposeidon was doing, it was a way different thing from Alamosaurus.

Crucially, the longest vertebrae in the BIBE 45854 series are about 80 or 81 cm long, which means that a 1.2-meter cervical would be half again as large. That is a pretty staggering thought, and that individual of Alamosaurus–assuming it was the same taxon as BIBE 45854, and not some other, longer-necked critter–would definitely be a contender for the largest sauropod of all time.

Illustrations here are of the big Alamosaurus cervical series from Big Bend, which was comprehensively described by Ron Tykoski and Tony Fiorillo in 2016, and which we have covered in these previous posts:

References

  • Anonymous. 1941. Find dinosaur neck bone nearly four feet long. The Science News-Letter 39(1):6–7.
  • Tykoski, R.S. and Fiorillo, A.R. 2016. An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America’s last giant sauropod. Journal of Systematic Palaeontology 15(5):339-364.

Fiona made me a cake for tomorrow.

She asked me if the flowers were OK. I said there were flowering plants at the end of the Cretaceous, so this is acceptable so long as we interpret the sauropod as a titanosaur.

These things just catch my eye, I can’t help it.

Left: Oddbins corkscrew, circa 1997. Right: left femur of Patagotitan mayorum, circa 100,000,000 BC.

Note that the corkscrew features a distinct medially directed femoral head, the bulge in the lateral margin of the proximal portion that is characteristic of titanosaurs, and a straight shaft. OK, it’s missing tibial and fibular condyles at the distant end, but you can’t have everything.

 

Here are some blank diagrams I whipped up for drawing in spinal cord pathways.

This one shows the whole cord, brainstem, thalamus, and cerebral cortex in coronal section, in cartoon form.

It’s for drawing in ascending sensory and descending motor pathways, as shown in this office hours sketch. DC-ML is dorsal column/medial lemniscus, which carries discriminative touch and conscious proprioception. ALS is anterolateral system, which carries pain, temperature, pressure, and itch. The lateral corticospinal tract carries fibers for voluntary control of major muscle groups. Each pathway differs in terms of where it decussates (crosses the midline, left-to-right and vice versa) and synapses (relays from one neuron to the next). The sensory pathways involve primary, secondary, and tertiary sensory neurons, and the motor pathways involve upper motor neurons (UMNs) and lower motor neurons (LMNs).

This one shows cross-sections of the cord at cervical, thoracic, lumbar, and sacral levels, for drawing ascending and descending pathways and thinking about how patterns of somatotopy come to exist.

Somatotopy is the physical representation of the body in the central nervous system. A common abbreviation scheme is A-T-L for arm-trunk-leg, as shown here for ascending sensory and descending motor pathways.

Finally, this one shows the spinal cord and spinal nerve roots at four adjacent spinal levels, for tracking the specific fates of sensory and motor neurons at each spinal level.

This is particularly useful when working out the consequences of an injury, like the spinal cord hemisection (Brown-Sequard syndrome) shown here in pink. The little human figure only shows the zone in which pain and temperature sensation are lost. There would also be losses of discriminative touch, conscious proprioception, and voluntary motor control on the same side as the injury.

Finally, since we’ve had a bit of a sauropod drought lately, here are a couple of photos of the mounted cast skeleton of Patagotitan in Stanley Field Hall at the Field Museum of Natural History in Chicago.

I gotta say, this mount beats the one at the AMNH in every way, because it’s well lit and you can move all the way around it and even look down on it from above. In fact, in terms of getting to move all the way around it, get well back from it to see the whole thing at once, and even walk directly underneath it (without having to ask permission to hop the fence), it might be the best-mounted sauropod skeleton in the world. The Brachiosaurus outside is also pretty great (evidence), but it loses points because you can’t walk around it on an upstairs balcony. Every other mounted sauropod I know of is either in more cramped surroundings, or you can’t get underneath it, or is less well-lit, or some combination of the above. Am I forgetting any worthy contenders? Feel free to make your case in the comments.

Incidentally, the spinal cord of Patagotitan was something like 120 feet long, and the longest DC-ML primary sensory neurons ran all the way from tail-tip to brainstem before they synapsed, making them among the longest cells in the history of life.

A belated thank-you to Josh Matthews and the rest of the Burpee PaleoFest crew for a fun day at the FMNH back in March. I got home from that trip about 3 days before the pandemic quarantine started, so it’s waaaaay past time for me to blog about how awesome that trip was. Watch this space. UPDATE: hey, look, it only took me a third of a year this time! Link.

This just in from John Conway:

John doesn’t say much about it in the tweet where he unveiled this piece: just “A new #painting, of a Saltapotamus”. His website is just a little more forthcoming:

Saltapotamus

Saltasaurus was a small (for a sauropod) sauropod from the Late Cretaceous of Argentina. It had a some armour, and a lot of girth.

This reminds me very strongly of Obesethocoelicaudia, a fat restoration of Opisthocoelicaudia that John kindly did for Matt and me to use in our 2014 SVPCA talk, “Slender Giants”:

(Saltasaurus and Opisthocoelicaudia are both derived titanosaurs, and in most phylogenies they come out as pretty closely related.)

Is this kind of restoration credible? After all, it’s a long way from how we’ve been used to seeing Saltasaurus. Here, for example, is how E. Guanuco restored a group of four Saltasaurus individuals in Powell (2003: plate 78):

In this illustration they are tubby in a Normanpedia kind of way, but nothing very different from how (say) Apatosaurus was being restored not too long before then.

But the truth is that lots of animals have flesh envelopes very different from what you might predict based on the skeleton alone. Exhibit A, the inspiration for John’s new piece: the humble hippopotamus. Skeleton:

And life appearance:

It seems more than reasonable that across a clade as diverse, disparate and long-lived as the sauropods, there would have been some that were similarly heavy with flesh. In fact, I think it would be special pleading to argue that there were not.

Which specific sauropods were obese? That is much harder to tell. Hippos can be very heavy with little penalty as they spend much of their time in the water. Perhaps the same was true of some sauropods. If that’s so, then our quest must be for sauropods whose skeletons show adaptations for a semi-aquatic lifestyle, and on that basis Opisthocoelicaudia may have at least two feature supporting this interpretation: very robust limb bones and (if the interpretation of Borsuk-Bialynicka 1977: figure 5 is to be trusted) a transversely broad torso.

References

  • Powell, Jaime E. 2003. Revision of South American Titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria Museum 111:1-94.

 

In a comment on the last post, Mike wrote, “perhaps the pneumaticity was intially a size-related feature that merely failed to get unevolved when rebbachisaurs became smaller”.

Caudal pneumaticity in saltasaurines. Cerda et al. (2012: fig. 1).

Or maybe pneumaticity got even more extreme as rebbachisaurids got smaller, which apparently happened with saltasaurines  (see Cerda et al. 2012 and this post).

I think there is probably no scale at which pneumaticity isn’t useful. Like, we see a saltasaurine the size of a big horse and think, “Why does it need to be so pneumatic?”, as if it isn’t still one or two orders of magnitude more massive than an ostrich or an eagle, both of which are hyperpneumatic even though only one of them flies. Even parakeets and hummingbirds have postcranial pneumaticity.

Micro CT of a female Anna’s hummingbird. The black tube in the middle of the neck is the supramedullary airway. Little black dots in the tiny cervical centra are air spaces.

We’re coming around to the idea that the proper way to state the dinosaur size question is, “Why are mammals so lousy at being big on land?” Similarly, the proper way to state the pneumaticity question is probably not “Why is small sauropod X so pneumatic?”, but rather “Why aren’t some of the bigger sauropods even more pneumatic?”

Another thought: we tend to think of saltsaurines as being crazy pneumatic because they pneumatized their limb girdles and caudal chevrons (see Zurriaguz et al. 2017). Those pneumatic foramina are pretty subtle – maybe their apparent absence in other sauropod clades is just because we haven’t looked hard enough. Lots of things have turned out to be pneumatic that weren’t at first glance – see Yates et al. (2012) on basal sauropodomorphs and Wedel and Taylor (2013b) on sauropod tails, for example.

Back of the skull of a bighorn sheep, showing the air spaces inside one of the broken horncores.

Or, even more excitingly, if the absence is genuine, maybe that tells us something about sauropod biomechanics after all. Maybe if you’re an apatosaurine or a giant brachiosaurid, you actually can’t afford to pneumatize your coracoid, for example. One of my blind spots is a naive faith that any element can be pneumatized without penalty, which I believe mostly on the strength of the pneumatic horncores of bison and bighorn sheep. But AFAIK sauropod girdle elements don’t have big marrow cavities for pneumaticity to expand into. Pneumatization of sauropod limb girdles might have come at a real biomechanical cost, and therefore might have only been available to fairly small animals. (And yeah, Sander et al. 2014 found a pneumatic cavity in an Alamosaurus pubis, but it’s not a very big cavity.)

As I flagged in the title, this is noodling, not a finding, certainly not certainty. Just an airhead thinking about air. The comment thread is open, come join me.

References