Saltapotamus, meet Obesethocoelicaudia
August 21, 2020
This just in from John Conway:
John doesn’t say much about it in the tweet where he unveiled this piece: just “A new #painting, of a Saltapotamus”. His website is just a little more forthcoming:
Saltapotamus
Saltasaurus was a small (for a sauropod) sauropod from the Late Cretaceous of Argentina. It had a some armour, and a lot of girth.
This reminds me very strongly of Obesethocoelicaudia, a fat restoration of Opisthocoelicaudia that John kindly did for Matt and me to use in our 2014 SVPCA talk, “Slender Giants”:
(Saltasaurus and Opisthocoelicaudia are both derived titanosaurs, and in most phylogenies they come out as pretty closely related.)
Is this kind of restoration credible? After all, it’s a long way from how we’ve been used to seeing Saltasaurus. Here, for example, is how E. Guanuco restored a group of four Saltasaurus individuals in Powell (2003: plate 78):
In this illustration they are tubby in a Normanpedia kind of way, but nothing very different from how (say) Apatosaurus was being restored not too long before then.
But the truth is that lots of animals have flesh envelopes very different from what you might predict based on the skeleton alone. Exhibit A, the inspiration for John’s new piece: the humble hippopotamus. Skeleton:
And life appearance:
It seems more than reasonable that across a clade as diverse, disparate and long-lived as the sauropods, there would have been some that were similarly heavy with flesh. In fact, I think it would be special pleading to argue that there were not.
Which specific sauropods were obese? That is much harder to tell. Hippos can be very heavy with little penalty as they spend much of their time in the water. Perhaps the same was true of some sauropods. If that’s so, then our quest must be for sauropods whose skeletons show adaptations for a semi-aquatic lifestyle, and on that basis Opisthocoelicaudia may have at least two feature supporting this interpretation: very robust limb bones and (if the interpretation of Borsuk-Bialynicka 1977: figure 5 is to be trusted) a transversely broad torso.
References
- Powell, Jaime E. 2003. Revision of South American Titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria Museum 111:1-94.
Vertebral orientation, part 3: Matt weighs in
October 5, 2018
WOW! I knew I was dragging a bit on getting around to this vertebral orientation problem, but I didn’t realize a whole month had passed. Yikes. Thanks to everyone who has commented so far, and thanks to Mike for getting the ball rolling on this. Previous posts in this series are here and here.
First up, this may seem like a pointlessly picky thing to even worry about. Can’t we just orient the vertebrae in whichever way feels the most natural, or is easiest? Do we have to think about this?

The alarmingly 3D pelvis of the mounted brontosaur at the AMNH. Note that sauropod pubes are usually illustrated lying flat, so what usually passes for ‘lateral’ view would be roughly from the point of view of the animal’s knee.
I think we do. For sauropods, vertebrae are usually oriented for illustration purposes in one of two ways. The first is however they sit most easily on their pallets. This is similar to the problem Mike and I found for ‘lateral’ views of sauropod pelvic elements when were on our AMNH/Yale trip in 2012. In an articulated skeleton, the pubes and ischia usually lean inward by 30-45 degrees from their articulations with the ilia, so they can meet on the midline, but when people illustrate the “lateral view” of a sauropod pubis or ischium, it’s often the ventro-lateral aspect that is face-up when the element is lying on a shelf or a pallet. Photographic lateral does not equal biological lateral for those elements. Similarly, if I’m trying to answer biological questions about vertebrae (see below), I need to know something about their orientation in the body, not just how they sit comfortably on a pallet.
The other way that vertebrae are commonly oriented is according to what we might call the “visual long axis” of the centrum—so for example, dorsoventrally tall but craniocaudally short proximal caudals get oriented with the centrum ‘upright’, whereas dorsoventrally short but craniocaudally long distal caudals get oriented with the centrum ‘horizontal’, even if they’re in the same tail and doing so makes the neural canals or articular faces be oriented inconsistently down the column. (I’m not going to name names, because it seems mean to pick on people for something I just started thinking about myself, but if you go plow through a bunch of sauropod descriptions, you’ll see what I’m talking about.)
Are there biological questions where this matters? You bet! There are some questions that we can’t answer unless we have the vertebrae correctly oriented first. One that comes to mind is measuring the cross-sectional area of the neural canal, which Emily Giffin did a lot of back in the 90s. Especially for the Snowmass Haplocanthosaurus, what counts as the cross-sectional area of the neural canal depends on whether we are looking at the verts orthogonal to their articular faces, or in alignment with the course of the canal. I think the latter is pretty obviously the way to go if we are measuring the cross-sectional area of the canal to try and infer the diameter of the spinal cord—we’d want to see the canal the same way the cord ‘sees’ it as it passes through—but it’s less obvious if we’re measuring, say, the surface area of the articular face of the vertebra to figure out, say, cartilage stress. It doesn’t seem unreasonable to me that we might want to define a ‘neural axis’ for dealing with spinal-cord-related questions, and a ‘biomechanical axis’ for dealing with articulation-related questions.
With all that in mind, here are some points.
To me, asking “how do we know if a vertebra is horizontal” is an odd phrasing of the problem, because “horizontal” doesn’t have any biological meaning. I think it makes more sense to couch the question as, “how do we define cranial and caudal for a vertebra?” Normally both the articular surfaces and the neural canal are “aimed” head- and tail-wards, so the question doesn’t come up. Our question is, how do we deal with vertebrae for which the articular surfaces and neural canal give different answers?
(And by the way, I’m totally fine using “anterior” and “posterior” for quadrupedal animals like sauropods. I don’t think it causes any confusion, any more than people are confused by “superior” and “inferior” for human vertebrae. But precisely because we’re angling for a universal solution here, I think using “cranial” and “caudal” makes the most sense, just this once. That said, when I made the image above, I used anterior and posterior, and I’m too lazy now to change it.)
I think if we couch the question as “how do we define cranial and caudal”, it sets up a different set of possible answers than Mike proposed in the first post in this series: (1) define cranial and caudal according to the neural canal, and then describe the articular surfaces as inclined or tilted relative to that axis; (2) vice versa—realizing that using the articular surfaces to define the anatomical directions may admit a range of possible solutions, which might resurrect some of the array of possible methods from our first-draft abstract; (3) define cranial and caudal along the long axis of the centrum, which is potentially different from either of the above; (4) we can imagine a range of other possibilities, like “use the zygs” or “make the transverse processes horizontal” (both of which are subsets of Mike’s method C) but I don’t think most of those other possibilities are sufficiently compelling to be worthy of lengthy discussion.
IF we accept “neural canal”, “articular surfaces”, and “centrum long axis” as our strongest contenders, I think it makes most sense to go with the neural canal, for several reasons:
- In a causative sense, the neural tube/spinal cord does define the cranial/caudal axis for the developing skeleton. EDIT: Actually, that’s a bit backwards. It’s the notochord, which is later replaced by the vertebral column, that induces the formation of the brain and spinal cord from the neural plate. But it’s still true that the vertebrae form around the spinal cord, so it’s not wrong to talk about the spinal cord as a defining bit of soft tissue for the developing vertebrae to accommodate.
- The neural canal works equally well for isolated vertebrae and for articulated series. Regardless of how the vertebral column is oriented in life, the neural canal is relatively smooth—it may bend, but it doesn’t kink. So if we line up a series of vertebrae so that their neural canals are aligned, we’re probably pretty close to the actual alignment in life, even before we look at the articular surfaces or zygs.
- The articulated tails of Opisthocoelicaudia and big varanids show that sometimes the articular surfaces simply are tilted to anything that we might reasonably consider to be the cranio-caudal axis or long axis of the vertebra. In those cases, the articular surfaces aren’t orthogonal to horizontal OR to cranio-caudal. So I think articular surfaces are ruled out because they break down in the kinds of edge cases that led us to ask the question in the first places.
“Orient vertebrae, isolated or in series, so that their neural canals define the cranio-caudal axis” may seem like kind of a ‘duh’ conclusion (if you accept that it’s correct; you may not!), but as discussed up top, often vertebrae from a single individual are oriented inconsistently in descriptive works, and orientation does actually matter for answering some kinds of questions. So regardless of which conclusion we settle on, there is a need to sort out this problem.
That’s where I’m at with my thinking. A lot of this has been percolating in my hindbrain over the last few weeks—I figured out most of this while I was writing this very post. Is it compelling? Am I talking nonsense? Let me know in the comments.
Opisthocoelicaudia is Just Plain Wrong
February 24, 2013
I was cruising the monographs the other night, looking for new ideas, when the humerus of Opisthocoelicaudia stopped me dead in my tracks. I think you’ll agree it is an arresting sight:

Opisthocoelicaudia right humerus in medial, anterior, lateral, and posterior views, from Borsuk-Bialynicka (1977: figure 7)
I’d seen it before, but somehow I had never grokked its grotesque fatness. I mean, damn, Opisthocoelicaudia, you really let yourself go. Especially compared to the slenderness and grace of this juvenile Alamosaurus humerus:
Now, I realize that part of the slenderness of this Alamosaurus humerus might be because it’s a juvenile–other alamosaur humeri are a bit more robust–but it’s still a striking contrast. I couldn’t help but superimpose them, scaled to the same midshaft width:
I flipped the Alamosaurus humerus left-to-right to match that astonishing lump of Opisthocoelicaudia. The result reminds me of one of Abrell and Thompson’s Actual Facts:
If you put Woodrow Wilson inside William Howard Taft, he would have stuck out by a good 18 inches.
None of that probably signifies anything more than that I am easily amused. And also, Opisthocoelicaudia is Just Plain Wrong. You hear me, Opisthocoelicaudia? Don’t make me make you cry mayonnaise!
References
- Borsuk-Bialynicka, M. 1977. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii, gen. n., sp. n. from the Upper Cretaceous of Mongolia. Palaeontologia Polonica 37: 5-64.
- Lehman, Thomas M. and Alan B. Coulson. 2002. A juvenile specimen of the sauropod dinosaur Alamosaurus sanjuanensis from the Upper Cretaceous of Big Bend National Park, Texas. Journal of Paleontology 76(1): 156-172.