Here’s a bunch of cool stuff that is either available now or happening soon:

Sauropod Dinosaurs book excerpt in Prehistoric Times

Been on the fence about the sauropod book Mark Hallett and I wrote? Now you can try before you buy – our chapter on titanosaurs is reprinted in the new issue of Prehistoric Times magazine. I know it’s on newsstands because I picked it up at the local Barnes & Noble yesterday. You can also buy the issue from the PT website, physically or in digital form, solo or as part of a subscription. Many thanks to PT editor and publisher Mike Fredericks for the visibility, the staff at Johns Hopkins University Press for permission, and most of all to Mark Hallett for making it happen. We hope you enjoy it.

Get more sauropods in Mark Hallett’s 2018 dinosaur calendar

Mark has a dinosaur calendar out from Pomegranate, and I’m happy to say that sauropods are featured 5 out of 12 months. The calendar has a nice mix of Hallett classics and some newer works, including the cover art from our book, as shown above. Get it direct from Pomegranate or from Amazon.

Vicki’s public talk on forensic anthropology in December

My better half, anthropologist and author Vicki Wedel, is giving a public talk about her work on the evening of Thursday, December 14, at the Western Science Center in Hemet, California. Her title will be, “Bones, ballistics, and blunt force trauma.” I assume the talk will start at 6:00, but check the WSC website for details. The painted skull above is from the natural history museum in Vienna, and it doesn’t have any connection to the talk other than Vicki thought it was rad and I needed a skull to illustrate the post. For more on Vicki and her work, see these posts: cold case, book.

2017VWedelLecture

UPDATE: Final details on Vicki’s talk are out. It will start at 6:00, she’ll be signing copies of her book, Broken Bones: Anthropological Analysis of Blunt Force Trauma, and admission is $5.

My public talk on sauropods and whales in January

In January it will be my turn to give a talk at the Western Science Center. I’m on for the evening of Thursday, January 18. Title is not quite finalized but it will probably something along the lines of, “Dinosaurs versus whales: what is the largest animal of all time, and how do we know?” That’s me with the gray whale skeleton at Long Marine Lab in Santa Cruz, back in 2006. I was helping Nick Pyenson measure whales, back when we were both grad students. Ancient blog posts about that here: gray, blue.

See me in Seattle at Norwescon over Easter weekend

If you want to see me star-struck, come to Norwescon, home of the Philip K. Dick Award, next spring, where I’ll be rubbing shoulders with some vastly more famous people. Hugo, Nebula, and World Fantasy Award winner Ken Liu will be the Writer Guest of Honor, legendary SF&F visionary Wayne Douglas Barlowe will be the Artist Guest of Honor, Green Ronin is the Spotlight Publisher, and, er, I will be the Science Guest of Honor. Yes, I’m alert to both the honor and the incongruity of the thing. When I’m not Freaking. Out. about hanging with two of my favorite creators, I’ll probably be giving talks on dinosaurs and astronomy (my other thing) and participating on some panels and signing books. I’ll try not to disappoint.

Advertisements

As I noted in a comment on the previous post, titanosaurs have stupid cervicals.

As evidence, here is as gallery of titanosaur cervicals featured previously on SV-POW!.

1. From Whassup with your segmented lamina, Uberabatitan ribeiroi?, an anterior cervical of that very animal, from Salgado and Carvalho (2008: fig. 5). As well as the titular segmented lamina, note the ridiculous ventral positioning of the cervical rib. It’s like it’s trying to be Apatosaurus, but it just doesn’t have the chops.

uberabatitan-cervicals-copy

2. From Mystery of the missing Malawisaurus vertebra, this alleged vertebra of that taxon from Jacobs et al. (1993:fig. 1), which completely fails to resemble all the other cervicals subsequently described from Malawisaurus (see the earlier post for details). Note the crazy sail-like neural spine and super-fat parapophyseal stump.

malawisaurus-1993

3. From Futalognkosaurus was one big-ass sauropod, this completely insane posterior cervical vertebra of Futalognkosaurus in right anterolateral view, with Juan Porfiri (175 cm) for scale. It’s super-tall — much taller than it is wide, and seemingly taller than it is long.

Posterior cervical vertebra of Futalognkosaurus in right anterolateral view; Juan Porfiri (175 cm) for scale

4. From Ch-ch-ch-changes, cervical 11 of Rapetosaurus, from Curry Rogers (2009:fig. 5). Notice how tiny the centrum is compared with the tall superstructure, and how the neural spine has such a distinct peak. Weird.

Rapetosaurus cervical

5. From Talking about sauropods on The Twenty-First Floor, cervical 9 of the same Rapetosaurus individual, from Curry Rogers (2009:fig. 9). The neural spine is a completely different shape from that of C11, but that is presumably mostly due to damage. One of the interesting things here is the apparent lack of pneumatic foramina in the centrum. They’re there somewhere: Curry Rogers (2009:1054) writes “In cervical vertebrae 9, 11, and 12, the centrum bears an elongate shallow pneumatic fossa with two anterior pneumatic foramina surrounded by sharp, lip-like boundaries.” But they are hard to make out! 

CurryRogers2009-rapetosaurus-fig9-C9

The meta-oddity here is that the cervicals of the four titanosaur genera pictures here are all so different from each other. What does this mean?

Probably only that Titanosauria is a huge, disparate, long-lived clade that encompasses far more morphological variation than (say) Diplodocidae. It’s a truism that we don’t, even now, really have a handle on titanosaur phylogeny — every new study that comes out seems to recover a dramatically different topology — so our perception of the clade is really as a big undifferentiated blob. In contrast, the division of Diplodocoidea into Rebbachisaurids, Dicraeosaurids and Diplodocids (plus some odds and ends) is nicely established and easy to think about.

So. Lots of work to be done on titanosaurs.

References

You may remember this:

Rapetosaurus mount at Field Museum

…which I used to make this:

Rapetosaurus skeleton silhouette

…and then this:

Rapetosaurus skeleton silhouette - high neck

The middle image is just the skeleton from the top photo cut out from the background and dropped to black using ‘Levels’ in GIMP, with the chevrons scooted up to close the gap imposed by the mounting bar.

The bottom image is the same thing tweaked a bit to repose the skeleton and get rid of some perspective distortion on the limbs. The limb posture is an attempt to reproduce an elephant step cycle from Muybridge.

That neck is wacky. Maybe not as wrong as Omeisaurus, but pretty darned wrong. As I mentioned in the previous Rapetosaurus skeleton post, the cervicals are taller than the dorsals, which is opposite the condition in every other sauropod I’ve seen. All in all, I find the reposed Rapetosaurus disturbingly horse-like. And oddly slender through the torso, dorsoventrally at least. The dorsal ribs look short in these lateral views because they’re mounted at a very odd, laterally-projecting angle that I think is probably not correct. But the ventral body profile still had to meet the distal ends of the pubes and ischia, which really can’t go anywhere without disarticulating the ilia from the sacrum (and cranking the pubes down would only force the distal ends of the ilia up, even closer to the tail–the animal still had to run its digestive and urogenital pipes through there!). So the torso was deeper than these ribs suggest, but it was still not super-deep. Contrast this with Opisthocoelicaudia, where the pubes stick down past the knees–now that was a tubby sauropod. Then again, Alamosaurus has been reconstructed with a similarly compact torso compared to its limbs–see the sketched-in ventral body profile in the skeletal recon from Lehman and Coulson (2002: figure 11).

I intend to post more photos of the mount, including some close-ups and some from different angles, and talk more about how the animal was shaped in life. And hopefully soon, because history has shown that if I don’t strike while the iron is hot, it might be a while before I get back to it. For example, I originally intended this post to follow the last Rapetosaurus skeleton post by  about a week. So much for that!

Like everything else we post, these images are CC BY, so feel free to take them and use them. If you use them for the basis of anything cool, like a muscle reconstruction or life restoration, let us know and we’ll probably blog it.

Thanks to the kind offices of the folks at the Field Museum, especially Fossil Vertebrates collection manager Bill Simpson, on Wednesday I got to hop the fence and spend some quality time with FMNH PR 2209, the mounted holotype specimen of Rapetosaurus krausei. I took a tape measure with me, to get some dimensions from the mounted skeleton. Of course I have the detailed descriptive paper (Curry-Rogers 2009), but mounted skeletons are three-dimensional objects and it is often surprisingly difficult to get a sense of a how a skeleton goes together in three dimensions from pictures and measurements of the individual elements. And if these dimensions are not precisely those of the animal in life, because of assumptions made during mounting–concerning, say, cartilage thickness between bones, or the angles of the ribs–at least they’re a starting point for understanding the whole-body proportions of Rapetosaurus.

This is valuable because AFAIK this specimen is the only mounted titanosaur in North America, and maybe the only one outside of South America and China. [UPDATE: Alert commenters pointed out that I forgot about the Opisthocoelicaudia in Warsaw, which is almost entirely real, and the Argentinosaurus in Georgia, which is almost entirely fake.] And because Rapetosaurus is far out, man. ALL of the neural arches are unfused, even in the distal caudals–even the Arundel Astrodon (formerly Pleurocoelus) material has fused arches in the distal caudals (Wedel et al. 2000: fig. 15). So it’s a very young juvenile, but the neck is already more than twice the length of the body. I say ‘already’ because there is pretty good evidence that the cervical vertebrae grew proportionally longer over the course of ontogeny in at least some sauropods (Wedel et al. 2000:368-369). The neck is 336 cm long, and the femora are 69 cm long. If we isometrically scaled this animal up to have a 2-meter femur, the neck would be 10 meters long, without any such ontogenetic telescoping of the vertebrae. The implications of this for possible neck lengths in the supergiant titanosaurs are pretty darned interesting. The vertebrae of Rapetosaurus don’t really look anything like those of Argentinosaurus. Nevertheless, a sauropod with an Argentinosaurus-sized femur (2.5 meters for the largest known) and Rapetosaurus proportions would have a 12-meter neck–again, that’s assuming this very young Rapetosaurus already has adult proportions, when in fact it may be ontogenetically short-necked (now there’s a thought). In Apatosaurus and Camarasaurus, the cervicals grew in proportional length (i.e., relative to diameter) by 30-50% over ontogeny, but that’s starting from tiny baby vertebrae. The Rapetosaurus vertebrae are already very long, proportionally, but it is interesting to consider the possibilities that they might have been even longer in adults, and that that scaling might have been shared with other titanosaurs.

The tail in this mount is oddly short. Only about every third vertebra is real, with the rest sculpted, so the tail length inevitably depends on how many intermediary vertebrae were added. But unless there are a LOT of missing vertebrae, it’s probably not far off. I can tell you that when I first saw the mount I looked at the tail and said, “No way”. But up close, seeing the real vertebrae and the interspersed intermediates, it looked pretty reasonable, in part because the individual caudal vertebrae are proportionally short. This is one of those things where we may just have to wait for more and better material–although that might be a long wait, because this skeleton is already freakin’ gorgeous. For someone who is used to dealing with hideously incomplete and groadily distorted fossils, this Rapetosaurus material is just mouth-wateringly beautiful.

There’s loads more weird stuff to talk about, like how the cervical vertebrae are taller than the dorsals, which is opposite the condition in every other sauropod I’ve gotten to look at, and the shape of the ilium, and the conformation of the rib cage, but those will all have to wait for future posts. This one is already much longer than I intended it to be (standard).

For the curious, here are all of my measurements. Neck length, dorsal length, etc. are lengths of those sections of the column as mounted–that is, including both the vertebrae and the spaces between them. I haven’t compared any of these to the published measurements, these are straight from the tape measure to my notebook to you. I’m giving them in mm, because that’s what I naturally think in, but they’re all rounded to the nearest cm because given my methods–hand-holding a physical tape measure up next to a bone while I crouch contorted under a fragile mounted skeleton–giving measurements to the nearest mm would be illusory precision.

  • Skull length: 290
  • Neck length: 3360
  • Dorsal length: 1210
  • Sacrum length: 480
  • Tail length: 1720
  • Total length of skeleton, snout to tip of tail (sum of above): 7060
  • Glenoid height (ground to top of socket): L – 1110 (forefoot off floor by a few cm), R – 1080
  • Acetabular height (ground to top of socket): 1320 on both sides
  • Max height of body (ground to top of 5th sacral spine): 1630
  • Gleno-acetabular distance: L – 1500, R – 1440
  • Width across acetabula: 440 between weight-bearing centers, 470 to outer margins of ilia
  • With across glenoids (at bottom of scap-coracoid joints): 710
  • Femur length: 690 on both sides
  • Tib/fib length: 470 on both sides
  • Vertical height of foot: L – 90, R – 120 (different poses)
  • Humerus length: L – 530, R – 500
  • Radius/ulna length (between articular surfaces, not including olecranons): L – 370, R – 360
  • Metacarpus length (MT3): 190 on both sides

References

Sorry for the very short post. We have some longer stuff planned, but we’ve been too busy to kick it out this week, and I wanted to leave you with something cool to ponder over the weekend. Here’s the ilium of Giraffatitan overlaid on that of Brontomerus, scaled to the same acetabulum diameter (Giraffatitan is HMN J1, left ilium, modified from Janensch 1961: pl. E, fig. 2; Brontomerus is of course OMNH 66430 from Taylor et al. 2011:fig. 2).

And here’s the same thing comparing Rapetosaurus and Brontomerus (Rapetosaurus is holotype FMNH PR 2209, left ilium, modified from Curry Rogers 2009: fig. 39B). This one was tricky to scale because the ilial margin of the acetabulum is so different in the two taxa.

Here is the same trick performed with the ilium of the canonical pretty basal neosauropod Camarasaurus — specifically, Camarasaurus supremus AMNH 5761 Il. 1, left ilium, modified from Osborn and Mook (1921: fig. 87).  In this case, the proportions are so very different that it’s hard to make a meaningful superimposition: we tried to scale to equal acetabulum size, but probably that of the Camarasaurus was proportionally larger than in the other taxa illustrated in this post.  Still, here it is:

Finally, in response to Paul Barrett’s comment on a subsequent article, here is a superimposition of the ilium of Alamosaurus on that of Brontomerus:

(Sorry about the poor quality of this one, but the only figure I could find of a complete Alamosaurus ilium was the line-drawing in Lehman and Coulson (2002:fig. 8) — none of the standard descriptive works seem to illustrate a complete or near-complete ilium.)

We had a figure like these in an early draft of the paper, but we ditched it because we felt that doing a broader comparative figure would be more valuable. But I like the kick in the brainpan that these overlays provide.

References

A comment by Charles Epting on the recent article about self-publication led me to check the relevant section of the draft Phylocode, which I’ve read once or twice before but not recently enough for this to have hit me with the force it ought:

From Chapter II. Publication, and specifically Article 4. Publication Requirements:

4.2. Publication, under this code, is defined as distribution of text (but not sound), with or without images. To qualify as published, works must be peer-reviewed, consist of numerous (at least 50 copies), simultaneously obtainable, identical, durable, and unalterable copies, some of which are distributed to major institutional libraries (in at least five countries on three continents) so that the work is generally accessible as a permanent public record to the scientific community, be it through sale or exchange or gift, and subject to the restrictions and qualifications in the present article.

[…]

4.3. The following do not qualify as publication: (a) dissemination of text or images solely through electronic communication networks (such as the Internet) or through storage media (such as CDs, diskettes, film, microfilm and microfiche) that require a special device to read.

I am … flabbergasted, if that’s the word I want.  (I always want to spell that with an “h” after the “g”.)  This language is obviously derived from what’s in the ICZN — for example, “must have been produced in an edition containing simultaneously obtainable copies by a method that assures numerous identical and durable copies” becomes “must consist of numerous (at least 50 copies), simultaneously obtainable, identical, durable, and unalterable copies”.

And the result is that, just like the ICZN, the draft Phylocode does not recognise electronic publication.

Just think about that.  It means that if you define a clade in most of the PLoS journals, it won’t count (unless the journal does one of its inkjet-and-staples special print runs for you).  It also means that any clades you define in Proceedings of the Royal Society of London will not count when the initial online article is published, but only when the later printed edition comes out.  In other words, it means that both the science journals that are growing most quickly in influence and prestige and the oldest science journal in the world will both be useless for phylogenetic nomenclature.

I am sure that’s not what the Phylocode authors want.

That’s particularly true in light of the code’s further requirement that in order to be valid, clade definitions need to be registered.  Really, once a name is officially registered in the Phylocode database and its definition is in a paper published by a reputable publisher and existing in thousands of bit-for-bit-identicial copies in every country in the world, what else is needed for stability?  Fifty stapled inkjet copies?

It seems particularly startling in light of the fact that even the notoriously slow-moving ICZN seems now to be recognising that electronic publishing is inevitable; it would be pretty horrible if by the time the Phylocode is finally implemented, the ICZN has accepted its electronic publishing amendment and the Phylocode is seen to be trailing behind the ICZN in recognising the reality of the world we live in.  (For anyone who is not yet convinced of that reality, I recommend *cough* Taylor 2009, which is a pleasantly easy read.)

Is it too late?  Can the Phylocode be fixed before it’s implemented?  Can it just be done, or will it need lengthy discussion first?  If this doesn’t get fixed, will anyone take the Phylocode seriously?  Is there even a serious argument for keeping the Article 4.2 language as it is now?

I don’t know the answers to any of these questions.  Does anyone else out there?

FIGURE 27. Proximal caudal vertebrae (FMNH PR 2209) of Rapetosaurus krausei in A, anterior view; B, posterior view; C, D, left lateral view. Abbreviations: posl, postspinal lamina; prsl, prespinal lamina; pozg, postzygapophysis. Scale bar equals 3 cm. (Curry Rogers 2009:fig. 27. I'm not sure what part C of this figure is doing here, since it's identical to the rightmost portion of part D. I don't just mean similar, I mean the identical photograph.)

In other news …

I am astounded at the lack of response to University of California vs. Nature, which seems to me just about the most significant thing that’s happened in the world of academic literature since, well, forever.  Can it really be that everyone else’s response is, and I quote, “meh”?

References

By now you’ve probably heard that the entire UC system is threatening to boycott the Nature Publishing Group over unsustainable business practices.*

First, a few links to get you up to speed.

  • The original letter, which was an in-house UC document that leaked (possibly deliberately, certainly understandably) and then propagated through academia like the proverbial brushfire.
  • Nature Publishing Group’s initial response, which accused the UC of distorting several issues.
  • The UC’s rebuttal, which showed that, in fact, they had not, and that NPG was guilty of far worse distortions.
  • A Chronicle of Higher Education piece that has some very interesting quotes on the UC side.
  • Of all the blogging that has been done on this, the now-infamous Fight Club post seems to be getting the most link-love and discussion, and deservedly so.
  • This post and those that follow at The Book of Trogool have some good analysis and more scrumptious links. Also at ScienceBlogs, Janet Stemwedel considers this from the standpoint of junior researchers who need high-profile pubs to survive, and with her usual thoughtfulness and humanity.

* It doesn’t matter whose side you’re on, it’s pretty clear that a 7% markup every year is not sustainable for academic libraries whose budgets are flat, if they’re lucky, or more likely declining. If it really costs NPG 7% more each year to maintain their web access, then they’re doing something wrong. So who does this serve, other than NPG shareholders?

Some of the more interesting points that have come up in the ensuing discussions:

As noted by Janet Stemwedel, it would be very nice if the UC would issue a statement that good scholarship on the part of faculty will be recognized and rewarded no matter where it’s published. I am wholeheartedly in agreement with that, and am only sad that it took something like this to force the issue out into the open. Good work is good work, and the people who need it will generally find it. A lot of the battle over OA is getting hidebound administrators to stop thinking with their pseudoheads and find non-stupid ways to assess the output of their faculty. It shouldn’t be part of the battle over OA, because impact factors are orthogonal to publication model (and to the quality and lasting value of the work). But we all know that publications in Cell, Nature, and Science are the ticket to grants, promotions, and tenure. PLoS is successfully driving a wedge into this, but the battle is far from over.

More than one commenter has noted that there is probably some schadenfreude going on here, as faculty who feel like they are under the gun to publish in high-rejection-rate journals get to fight back a little, and as faculty who are being forced to take pay cuts, furloughs, etc., get to shift their anger from university-internal targets to a visible and little-loved external enemy. I think both hypotheses are accurate, and I suppose that it is not 100% fair for NPG to get pasted with more hate than they have coming, but I don’t really care, because the level of hate they have legitimately earned is already extremely high. In some of the online discussions about the future of newspapers–or rather, the lack of a future for newspapers–someone, somewhere, made the point that when you gouge people for decades, you shouldn’t be surprised when they stand aside and refuse to rescue you as you crash and burn. To my massive irritation, I can’t find that quote right now, but it’s exactly appropriate here. A lot of faculty wouldn’t pee in Nature‘s mouth if its teeth were on fire–and now they may get the chance to withhold that pee.

I’ve seen a few comments to the effect that the proposed boycott would never come to pass because the UC could not get junior faculty, who need those CNS pubs, to play ball. I wouldn’t bet that way. In my experience, junior faculty are far more likely to be attuned to the injustices of the high-stakes, for-profit journal world, and thus the ones most likely to understand what is actually at stake, and to have little sympathy for an outfit that they see as an unsympathetic career gatekeeper. If there is faculty resistance, I expect it to come from tenured folks who’ve benefited from having an inside track at Nature. (I know, I know, everyone from Nature on down claims that the “inside track” is a myth, but does anyone actually believe that?)

Many have noted Keith Yamamoto’s SDFy comments at the end of the Chronicle article: “In many ways it doesn’t matter where the work’s published, because scientists will be able to find it”. All I have to add here is “Hell yeah!” and “Bang on!”

Second sacral vertebra (FMNH PR 2209) of Rapetosaurus krausei. A, articulated centrum, neural arch, and left sacral rib in anterior view; B, articulated centrum, neural arch, and left sacral rib in posterior view; C, articulated vertebra in right lateral view; D, centrum in dorsal view, anterior towards top; E, centrum in ventral view, anterior towards top. Abbreviations: naf, neural arch facet; pfo, pneumatic foramen; posl, postspinal lamina; pozg, postzygapophysis; prsl, prespinal lamina; przg, prezygapophysis; srf, sacral rib facet. Scale bar equals 3 cm.  (Curry Rogers 2009:fig. 23)

For my part, I’d like to point out something that I have not seen widely discussed, but which seems like it ought to be. A not-for-profit organization–like, say, PLoS–has to maintain its infrastructure, pay its employees, and deliver a service. A corporation has all of those demands, plus the mandate to make a profit. So people can whine all they want that open access publishers still have to charge to do the same work as commercial publishers and that the work will cost about the same, but at the end of the day the commercial publisher is in business to make a profit, and PLoS is in business to make science. Absolutely, we should stop letting commercial publishers sell our own fat asses back to us. We should definitely stop paying any for-profit publisher to line its shareholders’ pockets at our expense. Screw them and the horse they rode in on; that is our freakin’ horse.