A month after I and Matt published our paper “Why is vertebral pneumaticity in sauropod dinosaurs so variable?” at Qeios, we were bemoaning how difficult it was to get anyone to review it. But what a difference the last nineteen days have made!

In that time, we’ve had five reviews, and posted three revisions: revision 2 in response to a review by Mark McMenamin, version 3 in response to a review by Ferdinand Novas, and version 4 in response to reviews by Leonardo Cotts, by Alberto Collareta, and by Eduardo Jiménez-Hidalgo.

Taylor and Wedel (2021: Figure 2). Proximal tail skeleton (first 13 caudal vertebrate) of LACM Herpetology 166483, a juvenile specimen of the false gharial Tomistoma schlegelii. A: close-up of caudal vertebrae 4–6 in right lateral view, red circles highlighting vascular foramina: none in Ca4, two in Ca5 and one in Ca6. B: right lateral view. C: left lateral view (reversed). D: close-up of caudal vertebrae 4–6 in left lateral view (reversed), red circles highlighting vascular foramina: one each in Ca4, Ca5 and Ca6. In right lateral view, vascular foramina are apparent in the centra of caudal vertebrae 5–7 and 9–11; they are absent or too small to make out in vertebrae 1–4, 8 and 12–13. In left lateral view (reversed), vascular foramina are apparent in the centra of caudal vertebrae 4–7 and 9; they are absent or too small to make out in vertebrae 1–3, 8, and 10–13. Caudal centra 5–7 and 9 are therefore vascularised from both sides; 4 and 10–11 from one side only; and 1–3, 8 and 12–13 not at all.

There are a few things to say about this.

First, this is now among our most reviewed papers. Thinking back across all my publications, most have been reviewed by two people; the original Xenoposeidon description was reviewed by three; the same was true of my reassessment of Xenoposeidon as a rebbachisaur, and there may have been one or two more that escape me at the moment. But I definitely can’t think of any papers that have been under five sets of eyes apart from this one in Qeios.

Now I am not at all saying that all five of the reviews on this paper are as comprehensive and detailed as a typical solicited peer review at a traditional journal. Some of them have detailed observations; others are much more cursory. But they all have things to say — which I will return to in my third point.

Second, Qeios has further decoupled the functions of peer review. Traditional peer review combines three rather separate functions: A, Checking that the science is sound before publishing it; B, assessing whether it’s a good fit for the journal (often meaning whether it’s sexy enough); and C, helping the authors to improve the work. When PLOS ONE introduced correctness-only peer-review, they discarded B entirely, reasoning correctly that no-one knows which papers will prove influential[1]. Qeios goes further by also inverting A. By publishing before the peer reviews are in (or indeed solicited), it takes away the gatekeeper role of the reviewers, leaving them with only function C, helping the authors to improve the work. Which means it’s no surprise that …

Third, all five reviews have been constructive. As Matt has written elsewhere, “There’s no way to sugar-coat this: getting reviews back usually feels like getting kicked in the gut”. This is true, and we both have a disgraceful record of allowing harshly-reviewed projects to sit fallow for far too long before doing the hard work of addressing the points made by the reviewers and resubmitting[2].

The contrast with the reviews from Qeios has been striking. Each one has sent me scampering back to the manuscript, keen to make (most of) the suggested changes — hence the three revised versions that I’ve posted in the last fortnight. I think there are at least two reasons for this, a big one and a small one.

  • The big reason, I think, is that the reviewers know their only role is to improve the paper. Well, that’s not quite true: they also have some influence over its evaluation, both in what they write and in assigning a 1-to-5 star score. But they know when they’re writing their reviews that whatever happens, they won’t block publication. This means, firstly, that there is no point in their writing something like “This paper should not be published until the authors do X”; but equally importantly, I think it puts reviewers in a different and more constructive mindset. They feel themselves to be allies of the authors rather than (as can happen) adversaries.
  • The smaller reason is it’s easier to deal with one review at a time. I understand why journals solicit multiple reviews: so the handling editor can consider them all in reaching a decision. I understand why the authors get all the reviews back at once. But that process can’t help but be discouraging: because, once the decision has been made, they’re all on hand and there’s no point in stringing them out. One at a time may not be better, exactly; but it’s emotionally easier.

Is this all upside? Well, it’s too early to say. We’ve only done this once. The experience has certainly been more pleasant — and, crucially, much more efficient — than the traditional publishing lifecycle. But I’m aware of at least two potential drawbacks:

First, the publish-first lifecycle could be exploited by cranks. If the willingness to undergo peer-review is the mark of seriousness in a researcher — and if non-serious researchers are unwilling to face that gauntlet — then a venue that lets you make an end-run around peer-review is an obvious loophole. How serious a danger is this? Only time will tell, but I am inclined to think maybe not too serious. Bad papers on a site like Qeios will attract negative reviews and low scores, especially if they start to get noticed in the mainsteam media. They won’t be seen as having the stamp of having passed peer-review; rather, they will be branded with having publicly failed peer-review.

Second, it’s still not clear where reviewers will come from. We wrote about this problem in some detail last month, and although it’s worked out really well for our present paper, that’s no guarantee that it will always work out this well. We know that Qeios itself approached at least one reviewer to solicit their comments: that’s great, and if they can keep doing this then it will certainly help. But it probably won’t scale, so either a different reviewing culture will need to develop, or we will need people who — perhaps only on an informal basis — take it on themselves to solicit reviews from others. We’re interested to see how this develops.

Anyway, Matt and I have found our first Qeios experience really positive. We’ve come out of it with what I think is a good paper, relatively painlessly, and with much less friction than the usual process. I hope that some of you will try it, too. To help get the process rolling, I personally undertake to review any Qeios article posted by an SV-POW! reader. Just leave a comment here to let me know about your article when it’s up.

 

Notes

[1] “No-one knows which papers will prove influential”. As purely anecdotal evidence for this claim: when I wrote “Sauropod dinosaur research: a historical review” for the Geological Society volume Dinosaurs: A Historical Perspective, I thought it might become a citation monster. It’s done OK, but only OK. Conversely, it never occurred to me that “Head and neck posture in sauropod dinosaurs inferred from extant animals” would be of more than specialist interest, but it’s turned out to be my most cited paper. I bet most researchers can tell similar stories.

[2] One example: my 2015 preprint on the incompleteness of sauropod necks was submitted for publication in October 2015, and the reviews[3] came back that same month. Five and a half years later, I am only now working on the revision and resubmission. If you want other examples, we got ’em. I am not proud of this.

[3] I referred above to “harsh reviews” but in fact the reviews for this paper were not harsh; they were hard, but 100% fair, and I found myself agreeing with about 90% of the criticisms. That has certainly not been true of all the reviews I have found disheartening!

 

Picture is unrelated. Seriously. I’m just allergic to posts with no visuals. Stand by for more random brachiosaurs.

Here’s something I’ve been meaning to post for a while, about my changing ideas about scholarly publishing. On one hand, it’s hard to believe now that the Academic Spring was almost a decade ago. On the other, it’s hard for me to accept that PeerJ will be only 8 years old next week–it has loomed so large in my thinking that it feels like it has been around much longer. The very first PeerJ Preprints went up on April 4, 2013, just about a month and a half after the first papers in PeerJ. At that time it felt like things were moving very quickly, and that the landscape of scholarly publishing might be totally different in just a few years. Looking back now, it’s disappointing how little has changed. Oh, sure, there are more OA options now — even more kinds of OA options, and things like PCI Paleo and Qeios feel genuinely envelope-pushing — but the big barrier-based publishers are still dug in like ticks, and very few journals have fled from those publishers to re-establish themselves elsewhere. APCs are ubiquitous now, and mostly unjustified and ruinously expensive. Honestly, the biggest changes in my practice are that I use preprint servers to make my conference talks available, and I use SciHub instead of interlibrary loan.

But I didn’t sit down to write this post so I could grumble about the system like an old hippie. I’ve learned some things in the past few years, about what actually works in scholarly publishing (at least for me), and about my preferences in some areas, which turn out to be not what I expected. I’ll focus on just two areas today, peer review, and preprints.

How I Stopped Worrying and Learned to Love Peer Review

Surprise #1: I’m not totally against peer review. I realize that the way it is implemented in many places is deeply flawed, and that it’s no guarantee of the quality of a paper, but I also recognize its value. This is not where I was 8 years ago; at the time, I was pretty much in agreement with Mike’s post from November, 2012, “Well, that about wraps it up for peer-review”. But then in 2014 I became an academic editor at PeerJ. And as I gained first-hand experience from the other side of the editorial desk, I realized a few things:

  • Editors have broad remits in terms of subject areas, and without the benefit of peer reviews by people who specialize in areas other than my own, I’m not fit to handle papers on topics other than Early Cretaceous North American sauropods, skeletal pneumaticity, and human lower extremity anatomy.
  • Even at PeerJ, which only judges papers based on scientific soundness, not on perceived importance, it can be hard to tell where the boundary is. I’ve had to reject a few manuscripts at PeerJ, and I would not have felt confident about doing that without the advice of peer reviewers. Even with no perceived importance criterion, there is definitely a lower bound on what counts as a publishable observation. If you find a mammoth toe bone in Nebraska, or a tyrannosaur tooth in Montana, there should probably be something more interesting to say about it, beyond the bare fact of its existence, if it’s going to be the subject of a whole paper.
  • In contentious fields, it can be valuable to get a diversity of opinions. And sometimes, frankly, I need to figure out if the author is a loony, or if it’s actually Reviewer #2 that’s off the rails. Although I think PeerJ generally attracts fairly serious authors, a handful of things that get submitted are just garbage. From what I hear, that’s the case at almost every journal. But it’s not always obvious what’s garbage, what’s unexciting but methodologically sound, and what’s seemingly daring but also methodologically sound. Feedback from reviewers helps me make those calls. Bottom line, I do think the community benefits from having pre-publication filters in place.
  • Finally, I think editors have a responsibility to help authors improve their work, and reviewers catch a lot of stuff that I would miss. And occasionally I catch something that the reviewers missed. We are collectively smarter and more helpful than any of us would be in isolation, and it’s hard to see that as anything other than a good thing.

The moral here probably boils down to, “white guy stops bloviating about Topic X when he gains actual experience”, which doesn’t look super-flattering for me, but that’s okay.

You may have noticed that my pro-peer-review comments are rather navel-gaze-ly focused on the needs of editors. But who needs editors? Why not chuck the whole system? Set up an outlet called Just Publish Everything, and let fly? My answer is that my time in the editorial trenches has convinced me that such a system will silt up with garbage papers, and as a researcher I already have a hard enough time keeping up with all of the emerging science that I need to. From both perspectives, I want there to be some kind of net to keep out the trash. It doesn’t have to be a tall net, or strung very tight, but I’d rather have something than nothing.

What would I change about peer review? Since it launched, PeerJ has let reviewers either review anonymously, or sign their reviews, and it has let authors decide whether or not to publish the reviews alongside the paper. Those were both pretty daring steps at the time, but if I could I’d turn both of those into mandates rather than options. Sunlight is the best disinfectant, and I think almost all of the abuses of the peer review system would evaporate if reviewers had to sign their reviews, and all reviews were published alongside the papers. There will always be a-holes in the world, and some of them are so pathological that they can’t rein in their bad behavior, but if the system forced them to do the bad stuff in the open, we’d all know who they are and we could avoid them.

Femur of Apatosaurus and right humerus Brachiosaurus altithorax holotype on wooden pedestal (exhibit) with labels and 6 foot ruler for scale, Geology specimen, Field Columbian Museum, 1905. (Photo by Charles Carpenter/Field Museum Library/Getty Images)

Quo Vadis, Preprints?

Maybe the advent of preprints was more drawn out than I know, but to me it felt like preprints went from being Not a Thing, Really, in 2012, to being ubiquitous in 2013. And, I thought at the time, possibly transformative. They felt like something genuinely new, and when Mike and I posted our Barosaurus preprint and got substantive, unsolicited review comments in just a day or two, that was pretty awesome. Which is why I did not expect…

Surprise #2: I don’t have much use for preprints, at least as they were originally intended. When I first confessed this to Mike, in a Gchat, he wrote, “You don’t have a distaste for preprints. You love them.” And if you just looked at the number of preprints I’ve created, you might get that impression. But the vast majority of my preprints are conference talks, and using a preprint server was just the simplest way to the get the abstract and the slide deck up where people could find them. In terms of preprints as early versions of papers that I expect to submit soon, only two really count, neither more recent than 2015. (I’m not counting Mike’s preprint of our vertebral orientation paper from 2019; he’s first author, and I didn’t mind that he posted a preprint, but neither is it something I’d have done if the manuscript was mine alone.)

My thoughts here are almost entirely shaped by what happened with our Barosaurus preprint. We put it up on PeerJ Preprints back in 2013, we got some useful feedback right away, and…we did nothing for a long time. Finally in 2016 we revised the manuscript and got it formally submitted. I think we both expected that since the preprint had already been “reviewed” by commenters, and we’d revised it accordingly, that formal peer review would be very smooth. It was not. And the upshot is that only now, in 2021, are we finally talking about dealing with those reviews and getting the manuscript resubmitted. We haven’t actually done this, mind, we’re just talking about planning to make a start on it. (Non-committal enough for ya?)

Why has it taken us so long to deal with this one paper? We’re certainly capable — the two of us got four papers out in 2013, each of them on a different topic and each of them substantial. So why can’t we climb Mount Barosaurus? I think a big part of it is that we know the world is not waiting for our results, because our results are already out in the world. We’re the only ones being hurt by our inaction — we’re denying ourselves the credit and the respect that go along with having a paper finally and formally published in a peer-reviewed journal. But we can comfort ourselves with the thought that if someone needs our observations to make progress on their own project, we’re not holding them up. Just having the preprint out there has stolen some of our motivation to the get the paper done and out, apparently enough to keep us from doing it at all.

Mike pointed out that according to Google Scholar, our Barosaurus preprint has been cited five times to date, once in its original version and four times in its revised version. But to me, the fact that the Baro manuscript has been cited five times is a fail. Because all of my peer-reviewed papers from 2014-2016, which have been out for less long, have been cited more. So I read that as people not wanting to cite it. And who can blame them? Even I thought it would be supplanted by the formally-published, peer-reviewed paper within a few weeks or months.

Mike then pointed me to his 2015 post, “Four different reasons to post preprints”, and asked how many of those arguments still worked for me now. Number 2 is good, posting material that would otherwise never see the light of day — it’s basically what I did when I put my dissertation on arXiv. Ditto for 4, which is posting conference presentations. I’m not moved by either 1 or 3. Number 3 is getting something out to the community as quickly as possible, just because you want to, and number 1 is getting feedback as quickly as possible. The reason that neither of those move me is that they’re solved to my satisfaction by existing peer-reviewed outlets. I don’t know of any journals that let reviewers take 2-4 months to review a paper anymore. I don’t know how much credit for the acceleration should go to PeerJ, which asks for reviews in 10 to 14 days, but surely some. And I don’t usually have a high enough opinion of my own work to think that the community will suffer if it takes a few months for a paper to come out through the traditional process.

(If it seems like I’m painting Mike as relentlessly pro-preprint, it’s not my intent. Rather, I’d dropped a surprising piece of news on him, and he was strategically probing to determine the contours of my new and unexpected stance. Then I left the conversation to come write this post while the ideas were all fresh in my head. I hope to find out what he thinks about this stuff in the comments, or ideally in a follow-up post.)

Back to task: at least for me, a preprint of a manuscript I’m going to submit anyway is a mechanism to get extra reviews I don’t want*, and to lull myself into feeling like the work is done when it’s not. I don’t anticipate that I will ever again put up a preprint for one of my own manuscripts if there’s a plausible path to traditional publication.

* That sounds awful. To people who have left helpful comments on my preprints: I’m grateful, sincerely. But not so grateful that I want to do the peer review process a second time for zero credit. I didn’t know that when I used to file preprints of manuscripts, but I know it now, and the easiest way for me to not make more work for both of us is to not file preprints of things I’m planning to submit somewhere anyway.

So much for my preprints; what about those of other people? Time for another not-super-flattering confession: I don’t read other people’s preprints. Heck, I don’t have time to keep up with the peer-reviewed literature, and I have always been convinced by Mike’s dictum, “The real value of peer-review is not as a mark of correctness, but of seriousness” (from this 2014 post). If other people want me to part with my precious time to engage with their work, they can darn well get it through peer review. And — boomerang thought — that attitude degrades my respect for my own preprint manuscripts. I wouldn’t pay attention to them if someone else had written them, so I don’t really expect anyone else to pay attention to the ones that I’ve posted. In fact, it’s extremely flattering that they get read and cited at all, because by my own criteria, they don’t deserve it.

I have to stress how surprising I find this conclusion, that I regard my own preprints as useless at best, and simultaneously extra-work-making and motivation-eroding at worst, for me, and insufficiently serious to be worthy of other people’s time, for everyone else. It’s certainly not where I expected to end up in the heady days of 2013. But back then I had opinions, and now I have experience, and that has made all the difference.

The comment thread is open. What do you think? Better still, what’s your experience?

Xinjiangtitan when originally described, from Wu et al. (2013)

We’re way late to this party, but better late than never I guess. Wu et al. (2013) described Xinjiangtitan shanshanesis as a new mamenchisaurid from the Middle Jurassic of China. At the time of the initial description, all of the dorsal and sacral vertebrae had been uncovered, as well as a handful of the most posterior cervicals and most anterior caudals.

Xinjiangtitan revealed, from Zhang et al. (2018)

Jump a few years forward 2018, when Zhang et al. described the complete cervical series of Xinjiangtitan, based on further excavation of the holotype (they also changed some of the element identifications in the original description). It’s pretty insane: 

  • 18 cervical vertebrae, same as Mamenchisaurus youngi, and one less than M. hochuanensis, all discovered in articulation;
  • 10 of those vertebrae have centrum lengths of 1 meter or more;
  • the longest centrum, that of C12, is 123cm long;
  • the total lengths of the separate cervical vertebrae (not articulated) add up to about 15 meters;
  • even assuming that the condyles of the vertebrae were fully buried in the cotyles, the total length of articulated neck would still be 13.36 meters. 

Now, some caveating. Zhang et al. (2018) report two different lengths for most the cervicals: a maximum centrum length, which includes the anterior condyle, and a “minimum centrum length” without the anterior condyle. Reporting cervical lengths minus the condyle is fairly common–Janensch did it for what is now Giraffatitan (“ohne condylus”), McIntosh (2005) did it for the AMNH Barosaurus, Tschopp and Mateus (2017) did it for Galeamopus pabsti, and so on. In the freely available but as-yet-not-formally-published 4th chapter of my dissertation (Wedel 2007), I referred to the length without the condyle as the “functional length”, and I explicitly assumed that it was “the length that each vertebra contributes to the total neck length”. At the time I assumed that condyles were always fully buried in cotyles in life, because I didn’t know about camel necks (see Taylor and Wedel 2013b: fig. 21 and this post). 

Why am I bringing up all these minutiae? Because I’m really interested in the actual length of the neck of Xinjiangtitan in life, and that’s not so very straightforward to figure out. I’ll start with what Zhang et al. wrote, then proceed to their measurements, and then discuss their map.

At the start of the Description section, Zhang et al. (2018: p. 3) wrote:

In SSV12001, the cervical series is almost completely articulated and is exposed laterally (Figure 2). The long neck (at least 14.9 m) is well-preserved with a total of 18 cervical vertebrae. This measurement was estimated based on the maximum centrum length including the anterior condyles with the space for the cartilage assumed.

How much space is assumed for the cartilage? They don’t say, and it’s not clear, but one reading is that they just added up the total lengths of all the cervical centra and assumed that the cotyles were completely full of cartilage. Which is not so crazy as it might sound, since that’s exactly what happens in camels. But let’s see what their tables of measurements say.

Xinjiangtitan cervical vertebra measurements, from Zhang et al. (2018)

Table 1 gives the measurements of the atlas and axis, and Table 2 gives the measurements of all the remaining cervicals. Only “minimum centrum length”–without the condyle–is reported for cervicals 4 and 5, because C3-C5 were articulated as a unit, they haven’t been separated, and without CT scanning or further prep it’s going to be impossible to determine how long they were with the condyles. However, we can infer that the condyles of C4 and C5 are buried in the cotyles of C3 and C4 because (a) only the without-condyle lengths are reported, and (b) the condyles aren’t visible in the figures. File that away, it’s going to be important.

Adding up all of the max centrum lengths, including 165mm for the axis and 30mm for the atlas, per Table 1, I get a total of 14985mm, or 14.985 meters. Because Zhang et al. were so assiduous about their reporting–they really did Measure Their Damn Dinosaur–we can estimate pretty closely how much longer that total would be if it included the condyles of C4 and C5. Subtracting the min length from the max length, we find that the condyle is 70mm long in both C3 and C6, so it’s reasonable to assume the same for the vertebrae in the middle. Adding 140mm to the earlier total gets us up to 15125mm, or 15.125 meters. That’s assuming condyles end even with the rims of the cotyles, and cotyles are completely full of cartilage.

Xinjiangtitan cervicals, from Zhang et al. (2018: fig 3)

Adding up the all of the minimum centrum lengths, again including the axis and atlas, yields a total of 13360mm, or 13.36 meters. I think this smaller total is much more likely to be the actual length of the neck in life, for three reasons:

  1. As mentioned above, the condyles of C4 and C5 of this very specimen are actually buried in the cotyles of the preceding vertebrae. So we don’t need to add any space for cartilage to the summed minimum (without condyle) lengths–there certainly was cartilage between the surfaces of the condyles and cotyles, because that’s how intervertebral joints work, but there was not enough to push the condyles back outside the cotyles, unless we want to engage in some special pleading that C3-C5 were unnaturally smooshed together.
  2. Camels notwithstanding, having the condyles buried in the cotyles is pretty standard for articulated necks of big, long-necked sauropods. In the holotype specimens of Mamenchisaurus hochuanensis and Sauroposeidon, the condyles are not visible in lateral view, because they are completely buried in the cotyles of the preceding vertebrae–see the photos in this post and on this page to confirm that for yourself. In Giraffatitan, just the edges of the condyles are visible sticking out the backs of the cotyles in some of the posterior cervicals–see this post.
  3. The 13.36-meter neck is more consistent with the map of the specimen in the ground than either the 14.9-meter or 15.1-meter totals.

A little unpacking on that last point. Using the dorsal lengths from Wu et al. (2013: table 1)–and assuming that Zhang et al. are correct, and the D1 of Wu et al. is actually cervical 18, but D11 of Wu et al. is actually D10 and D11 together, so there are still 12 dorsals–I get a total length for the articulated dorsal column of 3355mm. Dividing 13360 by 3355 yields a cervical/dorsal ratio of 3.98. Using the screenshot of the map from Zhang et al. (2018: fig. 2), I measured 1505 pixels for the summed cervicals, 380 pixels for the summed dorsals, and 112 pixels for the scale bar. Assuming the scale bar is supposed to be 1 meter (and not 20 meters or 2.0 meters as it is labeled) yields a summed cervical length of 13.4 meters, a summed dorsal length of 3.39 meters, and a cervical/dorsal ratio of 3.96–all admirably close, off by no more than 4cm across 16+ meters, if the neck in the ground was articulated condyle-inside-cotyle. If we assume the map shows a 14.9-meter neck, then both the dorsal series and the scale bar are off by about 12%, which is unreasonable given the high precision of the map if the articulated neck corresponds to the summed minimum lengths.

Mounted skeleton of Omeisaurus tianfuensis: N E C C

Bonus observation #1: the holotype of Mamenchisaurus hochuanensis has a cervical/dorsal ratio of 3.52, but in Omeisaurus tianfuensis the same ratio is 4.09. So Xinjiangtitan is actually a little shorter-necked than Omeisaurus, at least compared to the length of the dorsal series.

Bonus observation #2: the 123-cm cervical of Xinjiangtitan is only the fifth-longest vertebra of anything to date:

  1. BYU 9024, possibly referable to Supersaurus or Barosaurus: 137cm
  2. Price River 2 titanosauriform: 129cm
  3. OMNH 53062, Sauroposeidon holotype: 125cm
  4. KLR1508-77-2, Ruyangosaurus giganteus referred specimen: 124cm
  5. SSV12001, Xinjiangtitan shanshanesis holotype: 123cm
  6. MPEF-PV 3400/3, Patagotitan holotype: 120cm (+?)
  7. MPM 10002, Puertasaurus holotype: 118cm

Getting pretty crowded there in the 120s, but then a big jump to BYU 9024. I’ll have more to say on that in a second.

Just to put a bow on this section, I’m pretty confident, based on all available measurements, taphonomic evidence, and the consilience between the measurements and the map, that the holotype individual of Xinjiantitan had a neck 13.36 meters (43 feet, 10 inches) long in life. 

That’s stunning.

By comparison, the second- and third-longest complete cervical series (of anything, ever, to date) belong to Mamenchisaurus hochuanensis, at 9.5 meters (Young and Zhao 1972, and confirmed by Mike in a basement in Slovenia), and Giraffatitan at 8.5 meters for MB.R.2181 (the larger XV2 specimen would have had a 9.6-meter neck).

Some other contenders, from Taylor and Wedel 2013a (fig 3)

There were things with longer necks, for sure, but none of those necks are complete (yet). Mamenchisaurus sinocanadorum is estimated to have had a neck about 12 meters long, based on the partial cervical series of the holotype. I know there are skeletal reconstructions out there with longer necks, and I will believe them as soon as the specimens they are based on are published. In the aforementioned dissertation chapter, I estimated 11.5 meters for the neck of Sauroposeidon, assuming a brachiosaurid-like cervical count of 13. Note that Mannion et al. (2013) recovered Sauroposeidon as a somphospondyl, and a cervical count of 15 or more as a synapomorphy of Somphospondyli. Adding a couple more 1.2-meter mid-cervicals would bring Sauroposeidon up to perhaps 14 meters. The longest cervicals of Patagotitan are in about the same size class, and we don’t know the cervical count in that monster, either.

BYU 9024, with the mounted (cast, composite) skeleton of Brachiosaurus altithorax and one Mike Taylor for scale

And of course, lurking out there in crazy neck-space is BYU 9024, the immense cervical originally referred to Supersaurus, but which more likely belongs to Barosaurus, and an ungodly huge one. That critter might–might–have had a 17-meter neck.

And I gotta say, in light of Xinjiangtitan, that no longer seems so unreasonable. Because Xinjiangtitan was a big sauropod but not a monster. The dorsal length of 3.3 meters and the femur length of 1.65 meters put it in roughly the same size category as the bigger individual of Jobaria (DL 3.2m, FL 1.8m) or the AMNH 5761 Camarasaurus supremus (DL 2.5m, FL 1.8m). Let’s imagine a Xinjiangtitan with a 2.4-meter femur, the size of Patagotitan or Argentinosaurus. Assuming isometric scaling, that individual would have a 2.4/1.65 = 1.45 x 13.36 = 19.4-meter neck. 

Do we really think such animals never existed?

Food for thought: the holotype individual of Xinjiangtitan was small enough to be buried as a complete skeleton. What about the individuals that were too big to bury in one shot?

Utterly unsurprising, but still nice to see: the highly pneumatic internal structure of the vertebrae of Xinjiangtitan, from Wu et al. (2013)

References

We’ve noted many times over the years how inconsistent pneumatic features are in sauropod vertebra. Fossae and formamina vary between individuals of the same species, and along the spinal column, and even between the sides of individual vertebrae. Here’s an example that we touched on in Wedel and Taylor (2013), but which is seen in all its glory here:

Taylor and Wedel (2021: Figure 5). Giraffatitan brancai tail MB.R.5000, part of the mounted skeleton at the Museum für Naturkunde Berlin. Caudal vertebrae 24–26 in left lateral view. While caudal 26 has no pneumatic features, caudal 25 has two distinct pneumatic fossae, likely excavated around two distinct vascular foramina carrying an artery and a vein. Caudal 24 is more shallowly excavated than 25, but may also exhibit two separate fossae.

But bone is usually the least variable material in the vertebrate body. Muscles vary more, nerves more again, and blood vessels most of all. So why are the vertebrae of sauropods so much more variable than other bones?

Our new paper, published today (Taylor and Wedel 2021) proposes an answer! Please read it for the details, but here’s the summary:

  • Early in ontogenly, the blood supply to vertebrae comes from arteries that initially served the spinal cord, penetrating the bone of the neural canal.
  • Later in ontegeny, additional arteries penetrate the centra, leaving vascular foramina (small holes carrying blood vessels).
  • This hand-off does not always run to completion, due to the variability of blood vessels.
  • In extant birds, when pneumatic diverticula enter the bone they do so via vascular foramina, alongside blood vessels.
  • The same was probaby true in sauropods.
  • So in vertebrae that got all their blood supply from vascular foramina in the neural canal, diverticula were unable to enter the centra from the outside.
  • So those centra were never pneumatized from the outside, and no externally visible pneumatic cavities were formed.

Somehow that pretty straightforward argument ended up running to eleven pages. I guess that’s what you get when you reference your thoughts thoroughly, illustrate them in detail, and discuss the implications. But the heart of the paper is that little bullet-list.

Taylor and Wedel (2021: Figure 6). Domestic duck Anas platyrhynchos, dorsal vertebrae 2–7 in left lateral view. Note that the two anteriormost vertebrae (D2 and D3) each have a shallow pneumatic fossa penetrated by numerous small foramina.

(What is the relevance of these duck dorsals? You will need to read the discussion in the paper to find out!)

Our choice of publication venue

The world moves fast. It’s strange to think that only eleven years ago my Brachiosaurus revision (Taylor 2009) was in the Journal of Vertebrate Palaeontology, a journal that now feels very retro. Since then, Matt and I have both published several times in PeerJ, which we love. More recently, we’ve been posting preprints of our papers — and indeed I have three papers stalled in peer-review revisions that are all available as preprints (two Taylor and Wedels and a single sole-authored one). But this time we’re pushing on even further into the Shiny Digital Future.

We’ve published at Qeios. (It’s pronounced “chaos”, but the site doesn’t tell you that; I discovered it on Twitter.) If you’ve not heard of it — I was only very vaguely aware of it myself until this evening — it runs on the same model as the better known F1000 Research, with this very important difference: it’s free. Also, it looks rather slicker.

That model is: publish first, then filter. This is the opposite of the traditional scholarly publishing flow where you filter first — by peer reviewers erecting a series of obstacles to getting your work out — and only after negotiating that course to do get to see your work published. At Qeios, you go right ahead and publish: it’s available right off the bat, but clearly marked as awaiting peer-review:

And then it undergoes review. Who reviews it? Anyone! Ideally, of course, people with some expertise in the relevant fields. We can then post any number of revised versions in response to the reviews — each revision having its own DOI and being fixed and permanent.

How will this work out? We don’t know. It is, in part, an experiment. What will make it work — what will impute credibility to our paper — is good, solid reviews. So if you have any relevant expertise, we do invite you to get over there and write a review.

And finally …

Matt noted that I first sent him the link to the Qeios site at 7:44 pm my time. I think that was the first time he’d heard of it. He and I had plenty of back and forth on where to publish this paper before I pushed on and did it at Qeios. And I tweeted that our paper was available for review at 8:44 — one hour exactly after Matt learned that the venue existed. Now here we are at 12:04 my time, three hours and 20 minutes later, and it’s already been viewed 126 times and downloaded 60 times. I think that’s pretty awesome.

References

  • Taylor, Michael P. 2009. A re-evaluation of Brachiosaurus altithorax Riggs 1903 (Dinosauria, Sauropoda) and its generic separation from Giraffatitan brancai (Janensch 1914). Journal of Vertebrate Paleontology 29(3):787-806. [PDF]
  • Taylor, Michael P., and Mathew J. Wedel. 2021. Why is vertebral pneumaticity in sauropod dinosaurs so variable? Qeios 1G6J3Q. doi: 10.32388/1G6J3Q [PDF]
  • Wedel, Mathew J., and Michael P. Taylor 2013b. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus. PLOS ONE 8(10):e78213. 14 pages. doi: 10.1371/journal.pone.0078213 [PDF]

This is a very belated follow-up to “Tutorial 12: How to find problems to work on“, and it’s about how to turn Step 2, “Learn lots of stuff”, into concrete progress. I’m putting it here, now, because I frequently get asked by students about how to get started in research, and I’ve been sending them the same advice for a while. As with Tutorial 25, from now on I can direct the curious to this post, and spend more time talking with them about what they’re interested in, and less time yakking about nuts and bolts. But I hope the rest of you find this useful, too.

Assuming, per Tutorial 12, that you’ve picked something to investigate–or maybe you’re trying to pick among things to investigate–what next? You need a tractable way to get started, to organize the things you’re learning, and to create a little structure for yourself. My recommendation: do a little project, with the emphasis on little. Anyone can do this, in any area of human activity. Maybe your project will be creating a sculpture, shooting and editing a video, learning–or creating–a piece of music, or fixing a lawn mower engine. My central interest is how much we still have to discover about the natural world, so from here on I’m going to be writing as a researcher addressing other researchers, or aspiring researchers.

Arteries of the anterior leg, from Gray’s Anatomy (1918: fig. 553). Freely available courtesy of Bartleby.com.

I’ll start with a couple of examples, both from my own not-too-distant history. A few years ago I got to help some of my colleagues from the College of Podiatric Medicine with a research project on the perforating branch of the peroneal artery (Penera et al. 2014). I knew that vessel from textbooks and atlases and from having dissected a few out, but I had never read any of the primary (journal) literature on it. As the designated anatomist on the project, I needed to write up the anatomical background. So I hit the journals, tracked down what looked like the most useful papers, and wrote a little 2-page summary. We didn’t use all of it in the paper, and we didn’t use it all in one piece. Some sentences went into the Introduction, others into the Discussion, and still others got dropped entirely or cut way down. But it was still a tremendously useful exercise, and in cases like this, it’s really nice to have more written down than you actually need. Here’s that little writeup, in case you want to see what it looks like:

Wedel 2013 anatomy of the perforating branch of the peroneal artery

Pigeon spinal cord cross-section, from Necker (2006: fig. 4).

More recently, when I started working with Jessie Atterholt on weird neural canal stuff in dinosaurs, I realized that I needed to know more about glycogen bodies in birds, and about bird spinal cords generally. I expected that to be quick and easy: read a couple of papers, jot down the important bits, boom, done. Then I learned about lumbosacral canals, lobes of Lachi, the ‘ventral eminences’ of the spinal cord in ostriches, and more, a whole gnarly mess of complex anatomy that was completely new to me. I spent about a week just grokking all the weird crap that birds have going on in their neural canals, and realized that I needed to crystallize my understanding while I had the whole structure in my head. Otherwise I’d come back in a few months and have to learn it all over again. Because it was inherently visual material, this time I made a slide deck rather than a block of text, something I could use to get my coauthors up to speed on all this weirdness, as well as a reminder for my future self. Here’s that original slide deck:

Wedel 2018 Avian lumbosacral spinal cord specializations

If you’re already active in research, you may be thinking, “Yeah, duh, of course you write stuff down as you get a handle on it. That’s just learning.” And I agree. But although this may seem basic, it isn’t necessarily obvious to people who are just starting out. And even to the established, it may not be obvious that doing little projects like this is a good model for making progress generally. Each one is a piton driven into the mountainside that I’m trying to climb: useful for me, and assuming I get them out into the world, useful for anyone I’d like to come with me (which, for an educator and a scientist, means everyone).

A view down the top of the vertebral column in the mounted skeleton of Apatosaurus louisae, CM 3018, showing the trough between the bifurcated neural spines.

If you’re not active in research, the idea of writing little term papers may sound like purgatory. But writing about something that you love, that fascinates you, is a very different proposition from writing about dead royalty or symbolism because you have to for a class.* I do these little projects for myself, to satisfy my curiosity, and it doesn’t feel like work. More like advanced play. When I’m really in the thick of learning a new thing–and not, say, hesitating on the edge before I plunge in–I am so happy that I tend to literally bounce around like a little kid, and the only thing that keeps me sitting still is the lure of learning the next thing. That I earn career beans for doing this still seems somewhat miraculous, like getting paid to eat ice cream.

* YMMV, history buffs and humanities folks. If dead royalty and symbolism rock your world but arteries and vertebrae leave you cold, follow your star, and may a thousand gardens grow.

Doing little projects is such a convenient and powerful way to make concrete progress that it has become my dominant mode. As with the piece that I wrote about the perforating branch of the peroneal artery, the products rarely get used wholesale in whatever conference presentation or research paper I end up putting together, but they’re never completely useless. First, there is the benefit to my understanding that I get from assembling them. Second, they’re useful for introducing other people to the sometimes-obscure stuff I work on, and nothing makes you really grapple with a problem like having to explain it to others. And third, these little writeups and slideshows become the Lego bricks from which I assemble future talks and papers. The bird neural canal slide deck became a decent chunk of our presentation on the Snowmass Haplocanthosaurus at the 1st Palaeontological Virtual Congress (Wedel et al. 2018)–and it’s about to become something even better. (Four months later: it did!)

The operative word at the start of the last paragraph is ‘concrete’. I don’t think this was always the case, but now that I’m in my mid-40s ‘what I know’ is basically equivalent to ‘what I remember’, which is basically equivalent to ‘what I’ve written down’. (And sometimes not even then–Mike and I both run across old posts here on SV-POW! that we’ve forgotten all about, which is a bit scary, given how often we put novel observations and ideas into blog posts.) Anyway, this is why I like the expression ‘crystallize my understanding’: the towers of comprehension that I build in my head are sand castles, and if I don’t find a way to freeze them in place, they will be washed away by time and my increasingly unreliable cerebral machinery.

Really nice Stegosaurus plate on display at Dinosaur National Monument.

Also, if I divide my life into the things I could do and the things I have done, only the things in the latter category are useful. So if you are wondering if it’s worthwhile to write a page to your future self about valves in the cerebral arteries of rats, or all of the dinosaurs from islands smaller than Great Britain, or whatever strange thing has captured your attention, I say yes, go for it. Don’t worry about finding something novel to say; at the early stages you’re just trying to educate yourself (also, talks and papers need intro and background material, so you can still get credit for your efforts). I’ll bet that if you set yourself the goal of creating a few of these–say, one per year, or one per semester–you’ll find ways to leverage them once you’ve created them. If all else fails, start a blog. That might sound flip, but I don’t mean for it to. I got my gig writing for Sky & Telescope because I’d been posting little observing projects for the readers of my stargazing blog.

A final benefit of doing these little projects: they’re fast and cheap, like NASA’s Discovery missions. So they’re a good way to dip your toes into a new area before you commit to something more involved. The more things you try, the more chances you have to discover whatever it is that’s going to make you feel buoyantly happy.

You may have noticed that all of my examples in this post involved library research. That’s because I’m particularly interested in using little projects to get started in new lines of inquiry, and whenever you are starting out in a new area, you have to learn where the cutting edge is before you can move it forward (Tutorial 12 again). Also, as a practical consideration, most of us are stuck with library research right now because of the pandemic. Obviously this library research is no substitute for time in the lab or the field, but even cutters and diggers need to do their homework, and these little projects are the best way that I’ve found of doing that.

P.S. If you are a student, read this and do likewise. And, heck, everyone else who writes should do that, too. It is by far the advice I give most often as a journal editor and student advisor.

P.P.S. As long as you’re reading Paul Graham, read this piece, too–this whole post was inspired by the bit near the end about doing projects.

References

I’m late to this party, but I want to say a few things about the recently announced €9,500 article-processing charge (APC) that Nature has introduced to make itself Plan-S compliant.


The first thing is that a lot of people are quite understandably outraged by this very large fee.

Good. They should be outraged. The APIC is outrageous.

But here’s the thing: we should all have been outraged at Nature‘s cost long, long ago. Becuase the €9,500 figure wasn’t pulled out of thin air. It’s the amount Springer Nature needs to charge to maintain its revenue at the same level. Which means we are already paying €9,500 for each Nature article, but not noticing because that cost is spread across many subscriptions.

Let me say this another way: for each article that is published in Nature, €9,500 leaves the scholarly community. (I might mention here in passing the profit margins at the big scholarly publishers are all around 35%, so it’s likely that upwards of €3,000 of that is pure profit.)

That’s why I welcome the outrage. It’s the sound of academics finally waking up and realising that they are being had. It’s several decades too late, but we can’t worry about that.


Second thing: almost all the scientific value of a paper published in Nature, over that of the manuscript before it went to that venue, is in peer-review.

Peer-review that we do. Because publishers do not provide peer-review. We do.

We have all swallowed the idea that we ought to provide professional peer-review services to publishers for free because that’s part of being in the scholarly community. When I am reviewing for a diamond OA journal (zero APC) such as Acta Palaeontologica Polonica, or a low-APC journal like PeerJ, I think that’s perfectly reasonable. But when it’s for a journal that is going to turn around and charge the author €9,500 for services that you and I provided, that is not reasonable.

And this is why, while I have grave reservations about the idea of introducing financial incentives into peer-review, I am intrigued by The 450 Movement, in which James Heathers argues that peer-reviewers should be paid $450 per review, and provides a sample contract that reviewers can send to publishers who ask them provide this service.

(And again, remember this was happening before Nature announced the APC, when they were subscription only. Back then, too, they were taking €9,500 per paper based on work that you did for them, for free.)


Third thing: the way to fix this is to stop feeding the beast.

How did we get into the situation where we consider it normal to give our work to journals that get €9,500 from it, and then contribute free professional services to help the journal create a versions of our colleagues’ work that the journals can claim copyright on?

It’s strange, isn’t it? I guess we’re boiled frogs. There was a time when Nature was just a regular journal, and placing a short paper in it was not much different from placing it elsewhere. But somehow it started to be seen as prestigious, and from there a runaway process quickly made things more and more extreme (as with runaway sexual selection). People saw a Nature paper as prestigious, so more people submitted there, so a greater proportion of submissions were rejected, so Nature came to be seen as even more more prestigious. Vamp till insane.

Because this is insane. It can’t be said too often (or, apparently, often enough even), that papers don’t get into Nature by being good science — rigorously argued, well supported, statistically sound. They get in by proposing an exciting hypothesis, or by featuring a spectacular specimen, or by finding a surprising result (often based on flimsy statistical evidence: impact factor has no correlation with statistical strength, so more prestigious journals do not have more strongly supported results.)

And worse, a given study in its Nature form is objectively less useful than the same study would be in a regular journal: it’s sliced and compressed to fit length limits that make no sense, especially for descriptive work.

So why do people expend so much energy trying to get their papers into Nature (and Science, which is just as bad)? Because people believe, rightly or wrongly, that their careers depend on publishing in these specific journals.

Do we have any idea how insane that sounds to people outside of the academic bubble?

“I discovered, documented and published on a completely novel evolutionary mechanism!”

“Oh, that must be great for your career.”

“Not really. I couldn’t get a compressed three-page version of it into Nature, so I had to publish a full-length, rigorously argued, extensively evidenced, lavishly illustrated version in PLOS ONE instead.”

If we want a rational scientific ecosystem, it’s imperative that we stop judging work by what journal it appears in, and judge it only by its own merits.

“But Mike, we don’t have time to actually read an author’s papers”. Oh, you’re telling me you don’t have time to do your job? Then you need to make changes.

“But Mike, it’s not that simple”. Yes, it is. It really is. If you judge a paper by the journal it appears in, you are scientifically illiterate. And you are encouraging all sorts of harmful behaviour that actively cripples the progress of science. People who are desperate to get a paper into Nature? At best, they cripple its scientific usefulness by cutting out crucial material, relegating a bare-bones (i.e. irreproducible) version methods section to footnotes, squashing illustrations together and shrinking them down to postage-stamp size. That’s if everything goes to plan. At worst, they cherry-pick the best results from experiments, or straight-up fabricate results. And either way, effort is wasted on getting into a specific journal that would otherwise be spent doing actual science.

Folks, we have to be better than this.

We just have to.

I’ve written four posts about the R2R debate on the proposition “the venue of its publication tells us nothing useful about the quality of a paper”:

A debate of this kind is partly intended to persuade and inform, but is primarily entertainment — and so it’s necessary to stick to the position you’ve been assigned. But I don’t mind admitting, once the votes have been counted, that the statement goes a bit further than I would go in real life.

It took me a while to figure out exactly what I did think about the proposition, and the process of the debate was helpful in getting me the point where I felt able to articulate it clearly. Here is where I landed shortly after the debate:

The venue of its publication can tell us something useful about a paper’s quality; but the quality of publication venues is not correlated with their prestige (or Impact Factor).

I’m fairly happy with this formulation: and in fact, on revisiting my speech in support of the original proposition, it’s apparent that I was really speaking in support of this modified version. I make no secret of the fact that I think some journals are objectively better than others; but that those with higher impact factors are often worse, not better.

What are the things that make a journal good? Here are a few:

  • Coherent narrative order, with methods preceding results.
  • All relevant information in one place, not split between a main document and a supplement.
  • Explicit methods.
  • Large, clear illustrations that can be downloaded at full resolution as prepared by the authors.
  • All data available, including specimen photos, 3D models, etc.
  • Open peer review: availability of the full history of submissions, reviews, editorial responses, rebuttal letters, etc.
  • Well designed experiment capable of replication.
  • Honesty (i.e. no fabicated or cherry-picked) data.
  • Sample sizes big enough to show real statistical effect.
  • Realistic assessment of the significance of the work.

And the more I look at such lists, the more I realise that that these quality indicators appear less often in “prestige” venues such as Science, Nature and Cell than they do in good, honest, working journals like PeerJ, Acta Palaeontologica Polonica or even our old friend the Journal of Vertebrate Paleontology. (Note: I am aware that the replication and statistical power criteria listed above generally don’t apply directly to vertebrate palaeontology papers.)

So where are we left?

I think — and I admit that I find this surprising — the upshot is this:

The venue of its publication can tell us something useful about a paper’s quality; but the quality of publication venues is inversely correlated with their prestige (or Impact Factor).

I honestly didn’t see that coming.

In the last post, I catalogued some of the reasons why Scientific Reports, in its cargo-cult attempts to ape print journals such as its stablemate Nature, is an objectively bad journal that removes value from the papers submitted to it: the unnatural shortening that relagates important material into supplementary information, the downplaying of methods, the tiny figures that ram unrelated illustrations into compound images, the pointless abbreviating of author names and journal titles.

This is particularly odd when you consider the prices of the obvious alternative megajournals:

So to have your paper published in Scientific Reports costs 10% more than in PLOS ONE, or 56% more than in PeerJ; and results in an objectively worse product that slices the paper up and dumps chunks of it in the back lot, compresses and combines the illustrations, and messes up the narrative.

So why would anyone choose to publish in it?

Well, the answer is depressingly obvious. As a colleague once expressed it to me “until I have a more stable job I’ll need the highest IFs I can pull off to secure a position somewhere“.

It’s as simple as that. PeerJ‘s impact factor at the time of writing is 2.353; PLOS ONE‘s is ‎2.776; That of Scientic Reports is ‎4.525. And so, it in the idiotic world we live in, it’s better for an author’s career to pay more for a worse version of his article in Scientific Reports than it is to pay less for a better version in PeerJ or PLOS ONE. Because it looks better to have got into Scientific Reports.

BUT WAIT A MINUTE. These three journals are all “megajournals”. They all have the exact same editorial criteria, which is that they accept any paper that is scientifically sound. They make no judgement about novelty, perceived importance or likely significance of the work. They are all completely up front about this. It’s how they work.

In other words, “getting into” Scientific Reports instead of PeerJ says absolutely nothing about the quality of your work, only that you paid a bigger APC.

Can we agree it’s insane that our system rewards researchers for paying a bigger APC to get a less scientifically useful version of their work?

Let me say in closing that I intend absolutely no criticism of Daniel Vidal or his co-authors for placing their Spinophorosaurus posture paper in Scientific Reports. He is playing the ball where it lies. We live, apparently, in a world where spending an extra $675 and accepting a scientifically worse result is good for your career. I can’t criticise Daniel for doing what it takes to get on in that world.

The situation is in every respect analogous to the following: before you attend a job interview, you are told by a respected senior colleague that your chances of getting the post are higher if you are wearing designer clothing. So you take $675 and buy a super-expensive shirt with a prominent label. If you get the job, you’ll consider it as bargain.

But you will never have much respect for the search committee that judged you on such idiotic criteria.

FHPR 17108, a right humerus of Brachiosaurus, with Wes Bartlett and his Clydesdale Molly for scale. Original paleoart by Brian Engh.

Last May I was out in the Salt Wash member of the Morrison Formation with Brian Engh and Thuat Tran, for just a couple of days of prospecting. We’d had crappy weather, with rain and lots of gnats. But temperatures were cooler than usual, and we were able to push farther south in our field area than ever before. We found a small canyon that had bone coming out all over, and as I was logging another specimen in my field book, I heard Brian shout from a few meters away: “Hey Matt, I think you better get over here! If this is what I think it is…”

What Brian had found–and what I couldn’t yet show you when I put up this teaser post last month–was this:

That’s the proximal end of a Brachiosaurus humerus in the foreground, pretty much as it was when Brian found it. Thuat Tran is carefully uncovering the distal end, some distance in the background.

Here’s another view, just a few minutes later:

After uncovering both ends and confirming that the proximal end was thin, therefore a humerus (because of its shape), and therefore a brachiosaur (because of its shape and size together), we were elated, but also concerned. This humerus–one of the largest ever found–was lying in what looked like loose dirt, actually sitting in a little fan of sediment cascading down into the gulch. We knew we needed to get it out before the winter rains came and destroyed it. And for that, we’d need John Foster’s experience with getting big jackets out of inconvenient places. We were also working out there under the auspices of John’s permit, so for many reasons we needed him to see this thing.

We managed to all rendezvous at the site in June: Brian, John, ReBecca Hunt-Foster, their kids Ruby and Harrison, and Thuat. We uncovered the whole bone from stem to stern and put on a coat of glue to conserve it. Any doubts we might have had about the ID were dispelled: it was a right humerus of Brachiosaurus.

While we were waiting for the glue to dry, Brian and Ruby started brushing of a hand-sized bit of bone showing just a few feet away. After about an hour, they had extracted the chunk of bone shown above. This proved to be something particularly exciting: the proximal end of the matching left humerus. We hiked that chunk out, along with more chunks of bone that were tumbled down the wash, which may be pieces of the shaft of the second humerus.

But we still had the intact humerus to deal with. We covered it with a tarp, dirt, and rocks, and started scheming in earnest on when, and more importantly how, to get it out. It weighed hundreds of pounds, and it was halfway down the steep slope of the canyon, a long way over broken ground from even the unmaintained jeep trail that was the closest road. Oh, and there are endangered plants in the area, so we coulnd’t just bulldoze a path to the canyon. We’d have to be more creative.

I told a few close friends about our find over the summer, and my standard line was that it was a very good problem to have, but it was actually still a problem, and one which we needed to solve before the winter rains came.

As it happened, we didn’t get back out to the site until mid-October, which was pushing it a bit. The days were short, and it was cold, but we had sunny weather, and we managed to get the intact humerus uncovered and top-jacketed. Here John Foster and ReBecca Hunt-Foster are working on a tunnel under the bone, to pass strips of plastered canvas through and strengthen the jacket. Tom Howells, a volunteer from the Utah Field House in Vernal, stands over the jacket and assists. Yara Haridy was also heavily involved with the excavation and jacketing, and Brian mixed most of the plaster himself.

John Foster, Brian Engh, Wes and Thayne Bartlett, and Matt Wedel (kneeling). Casey Cordes (blue cap) is in the foreground, working the winch. Photo courtesy of Brian Engh.

Here we go for the flip. The cable and winch were rigged by Brian’s friend, Casey Cordes, who had joined us from California with his girlfriend, teacher and photographer Mallerie Niemann.

Photo courtesy of Brian Engh.

Jacket-flipping is always a fraught process, but this one went smooth as silk. As we started working down the matrix to slim the jacket, we uncovered a few patches of bone, and they were all in great shape.

So how’d we get this monster out of the field?

From left to right: Wes Bartlett and one of his horses, Matt Wedel, Tom Howells, and Thayne Bartlett. Photo by Brian Engh.

Clydesdales! John had hired the Bartlett family of Naples, Utah–Wes, Resha, and their kids Thayne, Jayleigh, Kaler, and Cobin–who joined us with their horses Molly and Darla. Brian had purchased a wagon with pneumatic tires from Gorilla Carts. Casey took the point on winching the jacket down to the bottom of the wash, where we wrestled it onto the wagon. From there, one of the Clydesdales took it farther down the canyon, to a point where the canyon wall was shallow enough that we could get the wagon up the slope and out. The canyon slope was slickrock, not safe for the horses to pull a load over, so we had to do that stretch with winches and human power, mostly Brian, Tom, and Thayne pushing, me steering, and Casey on the winch.

Easily the most epic and inspiring photo of my butt ever taken. Wes handles horses, Casey coils rope, Thayne pushes the cart, and Kaler looks on. Photo by Brian Engh.

Up top, Wes hooked up the other horse to pull the wagon to the jeep trail, and then both horses to haul the jacket out to the road on a sled. I missed that part–I had gone back to the quarry to grab tools before it got dark–but Brian got the whole thing on video, and it will be coming soon as part of his Jurassic Reimagined documentary series.

There’s one more bit I have to tell, but I have no photos of it: getting the jacket off the sled and onto the trailer that John had brought from the Field House. We tried winching, prybar, you name it. The thing. Just. Did. Not. Want. To. Move. Then Yara, who is originally from Egypt, said, “You know, when my people were building the pyramids, we used round sticks under the big blocks.” As luck would have it, I’d brought about a meter-long chunk of thick dowel from my scrap wood bin. Brian used a big knife to cut down some square posts into roughly-round shapes, and with those rollers, the winch, and the prybar, we finally got the jacket onto the trailer.

The real heroes of the story are Molly and Darla. In general, anything that the horses could help with went waaay faster and more smoothly than we expected, and anything we couldn’t use the horses for was difficult, complex, and terrifying. I’d been around horses before, but I’d never been up close and personal with Clydesdales, and it was awesome. As someone who spends most of his time thinking about big critters, it was deeply satisfying to use two very large animals to pull out a piece of a truly titanic animal.

Back in the prep lab at the Field House in Vernal: Matt Wedel, Brian Engh, Yara Haridy, ReBecca Hunt-Foster, and John Foster.

We’re telling the story now because the humerus is being unveiled for the public today at the Utah Field House of Natural History State Park Museum in Vernal. The event will be at 11:00 AM Mountain Time, and it is open to the public. The humerus, now cataloged as FHPR 17108, will be visible to museum visitors for the rest of its time in the prep lab, before it eventually goes on display at the Field House. We’re also hoping to use the intact right humerus as a Rosetta Stone to interpet and piece back together the shattered chunks of the matching left humerus. There will be a paper along in due time, but obviously some parts of the description will have to wait until the right humerus is fully prepped, and we’ve made whatever progress we can reconstructing the left one.

Why is this find exciting? For a few reasons. Despite its iconic status, in dinosaur books and movies like Jurassic Park, Brachiosaurus is actually a pretty rare sauropod, and as this short video by Brian Engh shows, much of the skeleton is unknown (for an earlier, static image that shows this, see Mike’s 2009 paper on Brachiosaurus and Giraffatitan, here). Camarasaurus is known from over 200 individuals, Apatosaurus and Diplodocus from over 100 individuals apiece, but Brachiosaurus is only known from about 10. So any new specimens are important.

A member of the Riggs field crew in 1900, lying next to the humerus of the holotype specimen of Brachiosaurus. I’m proud to say that I know what this feels like now!

If Brachiosaurus is rare, Brachiosaurus humeri are exceptionally rare. Only two have ever been described. The first one, above, is part of the holotype skeleton of Brachiosaurus, FMNH P25107, which came out of the ground near Fruita, Colorado, in 1900, and was described by Elmer S. Riggs in his 1903 and 1904 papers. The second, in the photo below, is the Potter Creek humerus, which was excavated from western Colorado in 1955 but not described until 1987, by Jim Jensen. That humerus, USNM 21903, resides at the National Museum of Natural History in Washington, D.C.

The Brachiosaurus humerus from Potter Creek, Colorado, on display at the Smithsonian.

For the sake of completeness, I have to mention that there is a humerus on display at the LA County Museum of Natural History that is labeled Brachiosaurus, but it’s not been written up yet, and after showing photos of it to colleagues, I’m not 100% certain that it’s Brachiosaurus (I’m not certain that it isn’t, either, but further study is needed). And there’s at least one humerus with a skeleton that was excavated by the University of Kansas and sold by the quarry owner to a museum in Korea (I had originally misunderstood this; some but not all of the material from that quarry went to KU), that is allegedly Brachiosaurus, but that one seems to have fallen into a scientific black hole. I can’t say anything about its identification because I haven’t seen the material.

Happy and relieved folks the morning after the Brachstraction: Yara Haridy, Matt Wedel, John and Ruby Foster, and the Bartletts: Kaler, Wes, Cobin, Resha, Jayleigh, and Thayne. Jacketed Brachiosaurus humerus for scale. Photo by Brian Engh.

So our pair of humeri from the Salt Wash of Utah are only the 3rd and 4th that I can confidently say are from Brachiosaurus. And they’re big. Both are at least 62cm wide across the proximal end, and the complete one is 201cm long. To put that into context, here’s a list of the longest sauropod humeri ever found:

  1. Brachiosaurus, Potter Creek, Colorado: 213cm
  2. Giraffatitan, MB.R.2181/SII specimen, Tanzania: 213cm
  3. Brachiosaurus, holotype, Colorado: ~213cm (preserved length is 203cm, but the distal end is eroded, and it was probably 213cm when complete)
  4. Giraffatitan, XV3 specimen, Tanzania: 210cm
  5. *** NEW Brachiosaurus, FHPR 17108, Utah: 201cm
  6. Ruyangosaurus (titanosaur from China): ~190cm (estimated from 135cm partial)
  7. Turiasaurus (primitive sauropod from Spain): 179cm
  8. Notocolossus (titanosaur from Argentina): 176cm
  9. Paralititan (titanosaur from Egypt): 169cm
  10. Patagotitan (titanosaur from Argentina): 167.5cm
  11. Dreadnoughtus (titanosaur from Argentina): 160cm
  12. Futalognkosaurus (titanosaur from Argentina): 156cm

As far as we know, our intact humerus is the 5th largest ever found on Earth. It’s also pretty complete. The holotype humerus has an eroded distal end, and was almost certainly a few centimeters longer in life. The Potter Creek humerus was missing the cortical bone from most of the front of the shaft when it was found, and has been heavily restored for display, as you can see in one of the photos above. Ours seems to have both the shaft and the distal end intact. The proximal end has been through some freeze-thaw cycles and was flaking apart when we found it, but the outline is pretty good. Obviously a full accounting will have to wait until the bone is fully prepared, but we might just have the best-preserved Brachiosaurus humerus yet found.

Me with a cast of the Potter Creek humerus in the collections at Dinosaur Journey in Fruita, Colorado. The mold for this was made from the original specimen before it was restored, so it’s missing most of the bone from the front of the shaft. Our new humerus is just a few cm shorter. Photo by Yara Haridy.

Oh, our Brachiosaurus is by far the westernmost occurrence of the genus so far, and the stratigraphically lowest, so it extends our knowledge of Brachiosaurus in both time and space. It’s part of a diverse dinosaur fauna that we’re documenting in the Salt Wash, that minimally also includes Haplocanthosaurus, Camarasaurus, and either Apatosaurus or Brontosaurus, just among sauropods. There are also some exciting non-sauropods in the fauna, which we’ll be revealing very soon.

A chunk of matrix from the brachiosaur quarry. The black bits are fossilized plants.

And that’s not all. Unlike most of the other dinosaur fossils we’ve found in the Salt Wash, including the camarasaur, apatosaur, and haplocanthosaur vertebrae I’ve shown in recent posts, the humeri were not in concrete-like sandstone. Instead, they came out of a sandy clay layer, and the matrix is packed with plant fossils. It was actually kind of a pain during the excavation, because I kept getting distracted by all the plants. We did manage to collect a couple of buckets of the better-looking stuff as we were getting the humerus out, and we’ll be going back for more.

As you can seen in Part 1 of Brian’s Jurassic Reimagined documentary series, we’re not out there headhunting dinosaurs, we’re trying to understand the whole environment: the dinosaurs, the plants, the depositional system, the boom-and-bust cycles of rain and drought–in short, the whole shebang. So the plant fossils are almost as exciting for us as the brachiosaur, because they’ll tell us more about the world of the early Morrison.

The Barletts: Thayne, Jayleigh, Resha, Cobin, Wes, and Kaler.

Among the folks I have to thank, top honors go to the Bartlett family. They came to work, they worked hard, and they were cheerful and enthusiastic through the whole process. Even the kids worked–Thayne was one of the driving forces keeping the wagon moving down the gulch, and the younger Bartletts helped Ruby uncover and jacket a couple of small bits of bone that were in the way of the humerus flip. So Wes, Resha, Thayne, Jayleigh, Kaler, and Cobin: thank you, sincerely. We couldn’t have done it without you all, and Molly and Darla!

EDIT: I also need to thank Casey Cordes–without his rope and winch skills, the jacket would still be out in the desert. And actually everyone on the team was clutch. We had no extraneous human beings and no unused gear. It was a true team effort.

The full version of the art shown at the top of this post: a new life restoration of Brachiosaurus by Brian Engh.

From start to end, this has been a Brian Engh joint. He found the humerus in the first place, and he was there for every step along the way, including creating the original paleoart that I’ve used to bookend this post. When Brian wasn’t prospecting or digging or plastering (or cooking, he’s a ferociously talented cook) he was filming. He has footage of me walking up to the humerus for the first time last May and being blown away, and he has some truly epic footage of the horses pulling the humerus out for us. All of the good stuff will go into the upcoming installments of Jurassic Reimagined. He bought the wagon and the boat winch with Patreon funds, so if you like this sort of thing–us going into the middle of nowhere, bringing back giant dinosaurs, and making blog posts and videos to explain what we’ve found and why we’re excited–please support Brian’s work (link). Also check out his blog, dontmesswithdinosaurs.com–his announcement about the find is here–and subscribe to his YouTube channel, Brian Engh Paleoart (link), for the rest of Jurassic Reimagined and many more documentaries to come.

(SV-POW! also has a Patreon page [link], and if you support us, Mike and I will put those funds to use researching and blogging about sauropods. Thanks for your consideration!)

The happiest I have ever been in the field. Photo by Yara Haridy.

And for me? It’s been the adventure of a lifetime, by turns terrifying and exhilarating. I missed out on the digs where Sauroposeidon, Brontomerus, and Aquilops came out of the ground, so this is by far the coolest thing I’ve been involved with finding and excavating. I got to work with old friends, and I made new friends along the way. And there’s more waiting for us, in “Brachiosaur Gulch” and in the Salt Wash more generally. After five years of fieldwork, we’ve just scratched the surface. Watch this space!

Media Coverage

Just as I was about to hit ‘publish’ I learned that this story has been beautifully covered by Anna Salleh of the Australian Broadcasting Corporation. I will add more links as they become available.

References

The Man Himself, taking notes on what look like Giraffatitan caudals.

Here’s how I got my start in research. Through a mentorship program, I started volunteering at the Oklahoma Museum of Natural History in the spring of 1992, when I was a junior in high school. I’d been dinosaur-obsessed from the age of three, but I’d never had an anatomy course and didn’t really know what I was doing. Which is natural! I had no way of knowing what I was doing because I lacked training. Fortunately for me, Rich Cifelli took me under his wing and showed me the ropes. I started going out on digs, learned the basics of curatorial work, how to mold and cast fossils, how to screenwash matrix and then pick microfossils out of the concentrate under a dissecting microscope, and—perhaps most importantly—how to make a rough ID of an unidentified bone by going through the comparative element collection until I found the closest match.

All set, right? Ignition, liftoff, straight path from there to here, my destiny unrolling before me like a red carpet.

No.

It could have gone that way, but it didn’t. I had no discipline. I was a high-achieving high school student, but it was all to satisfy my parents. When I got to college, I didn’t have them around to push me anymore, and I’d never learned to push myself. I went off the rails pretty quickly. Never quite managed to lose my scholarships, without which I could not have afforded to be in college, period, but I skimmed just above the threshold of disaster and racked up a slate of mediocre grades in courses from calculus to chemistry. I even managed to earn a C in comparative anatomy, a fact which I am now so good at blocking out that I can go years at a time without consciously recalling it.

After three years of this, I had the most important conversation of my life. Because I was a zoology major I’d been assigned a random Zoology Dept. faculty member as an undergrad advisor. I was given to Trish Schwagmeyer, not because we got on well (we did, but that was beside the point) or had similar scientific interests, just luck of the draw. And it was lucky for me, because in the spring of 1996 Trish looked at my grades from the previous semester, looked me in the eye, and said, “You’re blowing it.” She then spent the next five minutes explaining in honest and excruciating detail just how badly I was wrecking my future prospects. I’ve told this story before, in this post, but it bears repeating, because that short, direct, brutal-but-effective intervention became the fulcrum for my entire intellectual life and future career.

The holotype specimen of Sauroposeidon coming out of the ground in 1994.

Roughly an hour later I had the second most important conversation of my life, with Rich Cifelli. While I’d been lost in the wilderness my museum volunteering had petered out to zero, and Rich would have been completely justified in telling me to get lost. Not only did he not do that, he welcomed me back into the fold, in a terrifyingly precise recapitulation of the Biblical parable of the prodigal son. When I asked Rich if I could do an independent study with him in the next semester, he thought for a minute and said, “Well, we have these big dinosaur vertebrae from the Antlers Formation that need to be identified.” Which is how, at the age of 21, with a rubble pile of an academic transcript and no real accomplishments to stand on, I got assigned to work on OMNH 53062, the future holotype of Sauroposeidon proteles.

I was fortunate in four important ways beyond the forgiveness, patience, and generosity of Richard Lawrence Cifelli:

  • OMNH 53062 was woefully incomplete, just three and a half middle cervical vertebrae, which meant that the project was small enough in concept to be tractable as an independent study for an undergrad. Rich and I both figured that I’d work on the vertebrae for one semester, come up with a family-level identification, and maybe we’d write a two-pager for Oklahoma Geology Notes documenting the first occurrence of Brachiosauridae (or whatever it might turn out to be) in the vertebrate fauna of the Antlers Formation.
  • Because the specimen was so incomplete, no-one suspected that it might be a new taxon, otherwise there’s no way such an important project would have been assigned to an undergrad with a spotty-to-nonexistent track record.
  • Despite the incompleteness, because the specimen consisted of sauropod vertebrae, it held enough characters to be identifiable–and eventually, diagnosable. Neither of those facts were known to me at the time.
  • All of Rich’s graduate students were already busy with their own projects, and nobody else was about to blow months of time and effort on what looked like an unpromising specimen.

NB: this guy is not a prodigy.

There is a risk here, in that I come off looking like some kind of kid genius for grasping the importance of OMNH 53062, and Rich’s other students look like fools for not seeing it themselves. It ain’t like that. The whole point is that nobody grasped the importance of the specimen back then. It would take Rich and me a whole semester of concentrated study just to come to the realization that OMNH 53062 might be distinct enough to be diagnosable as a new taxon, and a further three years of descriptive and comparative work to turn that ‘maybe’ into a paper. People with established research programs can’t afford to shut down everything else and invest six months of study into every incomplete, garbage-looking specimen that comes down the pike, on the off chance that it might be something new. Having the good judgment to not pour your time down a rat-hole is a prerequisite for being a productive researcher. But coming up with a tentative ID of an incomplete, garbage-looking specimen is a pretty good goal for a student project: the student learns some basic comparative anatomy and research skills, the specimen gets identified, no existing projects get derailed, and no-one established wastes their time on what is most likely nothing special. If the specimen does turn out to be important, that’s gravy.

So there’s me at the start of the fall of 1996: with a specimen to identify and juuuust enough museum experience, from my high school mentorship, to not be completely useless. I knew that one identified a fossil by comparing it to known things and looking for characters in common, but I didn’t know anything about sauropods or their vertebrae. Rich got me started with a few things from his academic library, I found a lot more in OU’s geology library, and what I couldn’t find on campus I could usually get through interlibrary loan. I spent a lot of time that fall standing at a photocopier, making copies of the classic sauropod monographs by Osborn, Hatcher, Gilmore, Janensch, and others, assembling the raw material to teach myself sauropod anatomy.

The sauropod monographs live within arm’s reach of my office chair to this day.

In addition to studying sauropods, I also started going to class, religiously, and my grades rose accordingly. At first I was only keeping up with my courses so that I would be allowed to continue doing research; research was the carrot that compelled me to become a better student. There was nothing immediate or miraculous about my recovery, and Rich would have to give me a few well-deserved figurative ass-kickings over the next few years when I’d occasionally wander off course again. But the point was that I had a course. After a few months I learned—or remembered—to take pride in my coursework. I realized that I had never stopped defining myself in part by my performance, and that when I’d been adrift academically I’d also been depressed. It felt like crawling out of a hole.

(Aside: I realize that for many people, depression is the cause of academic difficulty, not the reverse, and that no amount of “just working harder” can offset the genuine biochemical imbalances that underlie clinical depression. I sympathize, and I wish we lived in a world where everyone could get the evaluation and care that they need without fear, stigma, crushing financial penalties, or all of the above. I’m also not describing any case here other than my own.)

What fresh hell is this? (Apatosaur dorsal from Gilmore 1936)

Out of one hole, into another. The biggest problem I faced back then is that if you are unfamiliar with sauropod vertebrae they can be forbiddingly complex. The papers I was struggling through referred to a pandemonium of laminae, an ascending catalog of horrors that ran from horizontal laminae and prespinal laminae through infraprezygapophyseal laminae and spinopostzygapophyseal laminae. Often these features were not labeled in the plates and figures, the authors had just assumed that any idiot would know what a postcentrodiapophyseal lamina was because, duh, it’s right there in the name. But that was the whole problem: I didn’t know how to decode the names. I had no map. SV-POW! tutorials didn’t exist. Jeff Wilson’s excellent and still-eminently-useful 1999 paper codifying the terminology for sauropod vertebral laminae was still years in the future.

Then I found this, on page 35 of Werner Janensch’s 1950 monograph on the vertebrae of what was then called Brachiosaurus brancai (now Giraffatitan):

It was in German, but it was a map! I redrew it by hand in my very first research notebook, and as I was copying down the names of the features the lightbulb switched on over my head. “Diapophyse” meant “diapophysis”, and it was the more dorsal of the two rib attachments. “Präzygapophyse” was “prezygapophysis”, and it was one of the paired articular bits sticking out the front of the neural arch. And, crucially, “Präzygodiapophysealleiste” had to be the prezygodiapophyseal lamina, which connected the two. And so on, for all of the weird bits that make up a sauropod vertebra.

It’s been 22 years and I still remember that moment of discovery, my pencil flying across the page as I made my own English translations of the German anatomical terms, my mind buzzing with the realization that I was now on the other side. Initiated. Empowered. I felt like I had pulled the sword from the stone, found Archimedes’ lever that could move the world. In the following weeks I’d go back through all of my photocopied sauropod monographs with my notebook open to the side, reading the descriptions of the vertebrae for the second or third times but understanding them for the first time, drawing the vertebrae over and over again until I could call up their basic outlines from memory. This process spilled over from the fall of 1996 into the spring of 1997, as Rich and I realized that OMNH 53062 would require more than one semester of investigation.

Interlude with a left femur of the Oklahoma apatosaurine (but not the largest individual).

My memories of those early days of my sauropod research are strongly shaped by the places and circumstances in which I was doing the work. Vicki and I had gotten married in the summer of 1996 and moved into a two-bedroom duplex apartment on the north side of Norman. The upstairs had a long, narrow bathroom with two sinks which opened at either end onto the two upstairs bedrooms, the one in which we slept and the one we used as a home office. In the mornings I could get showered and dressed in no time, and while Vicki was getting ready for work or school I’d go into the office to read sauropod papers and take notes. Vicki has always preferred to have music on while she completes her morning rituals, so I listened to a lot of Top 40 hits floating in from the other upstairs rooms while I puzzled out the fine details of sauropod vertebral anatomy.

Two songs in particular could always be counted on to play in any given hour of pop radio in the early spring of 1997: Wannabe by the Spice Girls, and Lovefool by the Cardigans. I am surely the only human in history to have this particular Pavlovian reaction, but to this day when I hear either song I am transported back to that little bedroom office where I spent many a morning poring over sauropod monographs, with my working space illuminated by the light of the morning sun pouring through the window, and my mind illuminated by Werner Janensch, who had the foresight and good grace to give his readers a map.

Figure 5 from my undergraduate thesis: OMNH 53062 in right lateral view.

If you want to know what I thought about OMNH 53062 back in 1997, you can read my undergraduate thesis—it’s a free download here. Looking back now, the most surprising thing to me about that thesis is how few mentions there are of pneumaticity. I met Brooks Britt in the summer of 1997 and had another epochal conversation, in which he suggested that I CT scan OMNH 53062 to look at the air spaces inside the vertebrae. I filed my undergrad thesis in December of 1997, and the first session CT scanning OMNH 53062 took place in January, 1998. So in late 1997 I was still a pneumaticity n00b, with no idea of the voyage I was about to embark upon.

In 2010, after I was settled in as an anatomist at Western University of Health Sciences, I wrote a long thank-you to Trish Schwagmeyer. It had been 14 years since that pivotal conversation, but when she wrote back to wish me well, she still remembered that I’d gotten a C in comparative anatomy. I’d have a chance to make amends for that glaringly anomalous grade later the same year. At ICVM in Punta del Este, Uruguay, I caught up with Edie Marsh-Matthews, who had taught my comparative anatomy course back when. I apologized for having squandered the opportunity to learn from her, and she graciously (and to my relief) shifted the conversation to actual comparative anatomy, the common thread that connected us in the past and the present.

If the story has a moral, it’s that I owe my career in large part to people who went out of their way to help me when I was floundering. And, perhaps, that the gentle approach is not always the best one. I needed to have my head thumped a few times, verbally, to get my ass in gear, when less confrontational tactics had failed. I slid easily through the classrooms of dozens of professors who watched me get subpar grades and didn’t try to stop me (counterpoint: professors are too overworked to invest in every academic disaster that comes through the door, just like paleontologists can’t study every garbage specimen). If Trish Schwagmeyer and Rich Cifelli had not decided that I was worth salvaging, and if they not had the grit to call me out on my BS, I wouldn’t be here. As an educator myself now, that thought haunts me. I hope that I will be perceptive enough to know when a student is struggling not because of a lack of ability but through a lack of application, wise enough to know when to deploy the “you’re blowing it” speech, and strong enough to follow through.

References

  • Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.
  • Janensch, Werner.  1950.  Die Wirbelsaule von Brachiosaurus brancai.  Palaeontographica (Suppl. 7) 3: 27-93.
  • Wedel, M.J. 1997. A new sauropod from the Early Cretaceous of Oklahoma. Undergraduate honor thesis, Department of Zoology, University of Oklahoma, Norman, OK. 43pp.
  • Wilson, J.A. 1999. A nomenclature for vertebral laminae in sauropods and other saurischian dinosaurs. Journal of Vertebrate Paleontology 19: 639-653.

Matt with big Apato dorsal 2000

Final bonus image so when I post this to Facebook, it won’t grab the next image in line and crop it horribly to make a preview. This is me with OMNH 1670, in 2003 or 2004, photo by Andrew Lee.