The even more enigmatic taphonomy of Sauroposeidon
April 1, 2010
Update
This is an actual page from the late, lamented Weekly World News, from December 14, 1999. I always thought it was pretty darned funny that they had the alien remains discovered in the “belly” of an animal known only from neck vertebrae. Now, subjecting a tabloid story to technical scrutiny really is like dancing about architecture, but…it just tickles me. As does the entire story. I haven’t been able to get hold of Dr. Posvby to confirm his findings, but it’s been over a decade and he still hasn’t published, so I’m not holding my breath.
Incidentally, the WWN archives are available on Google Books: go here to read about Bat Boy siring a 3-headed alien Elvis baby on a female Sasquatch. Or something to that effect.
How tallweird was Sauroposeidon?
August 7, 2009
In an email, Vladimir Socha drew my attention to the fact that Tom Holtz’s dinosaur encyclopaedia estimates the maximum height of Sauroposeidon as 20 meters plus, and asked whether that was really possible. Here’s what Tom actually wrote: “Sauroposeidon was one of the largest of all dinosaurs. At perhaps 98 to 107 feet (30 to 32.5 meters) long and weighing 70 to 80 tons […] Sauroposeidon would have been the tallest of all dinosaurs. […] If it could crane its neck up, it might have been able to hold its head 66 to 69 feet (20 to 21 meters) high or more” (Holtz and Rey 2007:207). Vladimir was understandably skeptical. But can it be true?
Wedel and Cifelli (2005: fig. 15) shows Matt’s best skeletal reconstruction of Sauroposeidon, with Boring Old Brachiosaurus and a human for scale:

Sauroposeidon with Boring Old Brachiosaurus and human for scale and 20 m height indicated. Lightly modified from Wedel and Cifelli (2005: fig. 15)
Amazingly, those dummies didn’t include an actual scalebar; but apparently the human figure is 1.8 m tall, so by measuring pixels and cross-scaling, I determined that in this image, Sauroposeidon is a mere 13.43 m tall. I took the liberty of adding in a marker for the 20 m height proposed by Holtz, and as things stand you’d have to say that it doesn’t look probable.
But let’s see what we can do. We’ll begin with the classic brachiosaur skeleton of Paul (1988), which shows the well represented species Brachioaurus brancai:
(Some other time, we should take a moment to discuss the differences between this and the Wedel brachiosaur reconstruction; but it will not be this day.)
This reconstruction is in a nice erect-necked posture which, in light of our own recent paper, is probably not too extreme. Since all the neural arches and processes are missing from the only known posterior cervicals of this species, we don’t know how much flexibility they allowed, and so in light of how the rest of the animal is built (high shoulders and all) it seems reasonable to allow a lot of extension at the base of the neck. So let’s assume that the pose offered by Paul is correct. By measuring my scan of that figure, and I see that the 2.13 m humerus is 306 pixels long. The entire reconstruction, from tip of cranial crest down to forefoot, is 1999 pixels tall, which is 1999/306 = 6.53 times as long as the humerus, which scales to 6.53*2.13 = 13.91 m — a little taller than Sauroposeidon (not Brachiosaurus) in Matt’s reconstruction, which seems about right if we imgine Matt’s Brachiosaurus raising its neck into a Paul-compliant posture.
Now Paul’s reconstruction is based on the Berlin mounted skeleton HMN S II. Cervical 8 is very well preserved in that animal, and has a centrum length of 98 cm (Janensch 1950a:44). By contrast, the centrum of C8 of Sauroposeidon OMNH 53062 (the only known specimen) is 125 cm long (Wedel et al. 2000a: 110). So if Sauroposeidon is merely an elongated Brachiosaurus brancai, then it’s 125/98 = 1.28 times as long and tall, which would be 17.74 m.
But wait: it seems that Sauroposeidon is to Brachiosaurus brancai as Barosaurus is to Diplodocus — similar overall but more elongate. And it turns out that Barosaurus has at least 16, maybe 17 cervicals (McIntosh 2005:45) compared with Diplodocus‘s 15. So maybe Sauroposeidon also added cervicals from the brachiosaur base-state — in fact, that would hardly be surprising given that Brachiosaurus brancai has so few cervicals for a long-neck: 13, compared with 15 in most diplodocids, 16 or 17 in Barosaurus, and 19 in Mamenchisaurus. If you reconstruct Sauroposeidon with two more C8-like cervicals in the middle of the neck, that adds 2*125 = 250 cm, which would give us a total height of 17.74+2.5 = 20.24 m.
So I don’t think Tom Holtz’s estimate is completely unrealistic, even for the one Sauroposeidon specimen we have now — and remember that the chances of that individual being the biggest that species got are vanishingly small.
On the other hand, maybe Sauropodseidon‘s neck was the only part of it that was elongated in comparison to Brachiosaurus brancai — maybe its forelimbs were no longer than those of its cousin, so that only the neck elongation contributed to greater height. And maybe it had no additional cervicals, so its neck was “only” 1.28 times as long as that of Brachiosaurus brancai — 1.28*8.5 = 10.88 m, which is 2.38 m longer; so the total height would be 13.91+2.38 = 16.29 m (assuming the additional neck length was vertical). And maybe the neck couldn’t get very close to vertical, so that the true height was lower still.
All of this just goes to show the perils of reconstructing an animal based only on a sequence of four cervicals. (Reconstructing on the basis of a single partial mid-to-posterior dorsal, on the other hand, is a much more exact science.)
Finally: Matt’s reconstruction of Sauroposeidon is really rather conservative, and looks very much like a scaled-up vanilla brachiosaur. Just to see how it looks, I’ve made a reconstruction of the putative (and very possible) elongated, attenuated version of Sauroposeidon, showing the legs and cervicals 28% longer than in B. brancai, and with two additional cervicals. I made this by subjecting Greg Paul’s 1988 brachiosaur to all sorts of horrible and half-arsed distortions, so apologies to Greg. But remember, folks: this is just as likely correct as Matt’s version!

A different view of Sauroposeidon, based on elongation of the cervicals and legs of Brachiosaurus brancai and the insertion of two additional cervicals. Heavily and carelessly modified from Paul (1988: fig. 1)
References
- Holtz, Thomas R., Jr., and Luis Rey. 2007. Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages. Random House, New York. 428 pages.
- Janensch, Werner. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3: 27-93.
- McIntosh, John S. 2005. The Genus Barosaurus Marsh (Sauropoda, Diplodocidae). pp. 38-77 in Virginia Tidwell and Ken Carpenter (eds.), Thunder Lizards: the Sauropodomorph Dinosaurs. Indiana University Press, Bloomington, Indiana. 495 pages.
- Paul, Gregory S. 1988. The brachiosaur giants of the Morrison and Tendaguru with a description of a new subgenus, Giraffatitan, and a comparison of the world’s largest dinosaurs. Hunteria 2 (3): 1-14.
- Wedel, Mathew J., and Richard L. Cifelli. 2005. Sauroposeidon: Oklahoma’s Native Giant. Oklahoma Geology Notes 65 (2): 40-57.
- Wedel, Mathew J., Richard L. Cifelli and R. Kent Sanders. 2000a. Sauroposeidon proteles, a new sauropod from the Early Cretaceous of Oklahoma. Journal of Vertebrate Paleontology 20(1): 109-114.
- Wedel, Mathew J., Richard L. Cifelli and R. Kent Sanders. 2000b. Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica Polonica 45(4): 343-388.
.
There’s almost nothing but nothing there, Sauroposeidon edition
September 23, 2008
Internal structure of a cervical vertebra of Sauroposeidon, OMNH 53062. A, parts of two vertebrae from the middle of the neck. The field crew that dug up the bones cut though one of them to divide the specimen into manageable pieces. B, cross section of C6 at the level of the break, traced from a CT image and photographs of the broken end. The left side of the specimen was facing up in the field and the bone on that side is badly weathered. Over most of the broken surface the internal structure is covered by plaster or too damaged to trace, but it is cleanly exposed on the upper right side (outlined). C, the internal structure of that part of the vertebra, traced from a photograph. The arrows indicate the thickness of the bone at several points, as measured with a pair of digital calipers. The camellae are filled with sandstone.
Image and caption recycled from fig. 14 here. Hat tip to Mike from Ottawa for the wonderful title.
Addendum (from Mike)
What Matt’s failed to mention is that this section of prezygapophyseal ramus is one of the elements for which he calculated the Air-Space Proportion (ASP) in his chapter in “The Sauropods”. As shown in his table 7.2, this calculation yielded 0.89. Just think about that for a moment. 89% of the bone was air. Yikes.
It’s interesting that this was the only prezygpapophyseal ramus in the survey, and that it had a way higher value that any of the other elements considered, which topped out at 0.77, i.e., more than twice as much bone as this specimen. So maybe all prezyg rami are ridiculously pneumatic? So far (as far as I know) no-one’s measured the ASP of another ramus, so the answer remains, for now, ridiculously unknown to our planet.
Special bonus weirdness
Basal sauropodomorph wizard Adam Yates has posted an entry on his blog showing more sauropod vertebrae/ceratopsian frill convergence, as follow-up to our own recent post. Too weird.
Bonus post: Sauroposeidon illustrated
August 14, 2008
Since my last post was rather heavier on the sushi than on the sauropod vertebrae, I offer this special bonus post. One of the frustrating things about the otherwise marvelous Sauroposeidon monograph (Wedel et al. 2000b) is that the figures are so small. Sadly this is also true of all the other publications that illustrate its remains, and so the published literature has no nice, detailed images.
No longer! I’ve scored a rare paper copy of Matt’s undergraduate thesis (Wedel 1997) which contained basically all the material that eventually became that monograph, and which in addition has much larger versions of the figures. So without further ado, I give you figure 5 of that paper:
Part A is similar to Wedel et al. (2000b:fig 6), and part B to Wedel et al. (2000b:fig. 7A), but this older version is rather nicer, and from a waaay better scan than is available for Wedel et al. (2000b).
And that’s all I have to say about that.
References.
- Wedel, Mathew J. 1997. A new sauropod from the Early Cretaceous of Oklahoma. Unpublished undergraduate thesis, University of Oklahoma, Norman, OK. 43 pages.
- Wedel, M.J., Cifelli, R.L., and Sanders, R.K. 2000b. Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica Polonica 45(4):343-388
The enigmatic taphonomy of Sauroposeidon
July 24, 2008
This figure is stolen from Wedel et al. (2000:fig. 5). A shows the first 11 cervical vertebrae* of Sauroposeidon in articulation. B shows how the holotype specimen, OMNH 53062, must have disarticulated, and C shows it as it was found. Shaded vertebrae and bits of vertebrae were not found. The thickness of the cervical ribs is greatly exaggerated for clarity.
*We assume that Sauroposeidon had 13 cervicals like Brachiosaurus. It is not beyond the bounds of possibility that it had more, but it is unlikely that it had fewer. Sauroposeidon seems to be all about crazy neck elongation, and it doesn’t make sense to make some vertebrae longer while losing others.
Some facts:
- In life, the long cervical ribs formed overlapping bundles, just like the long neck tendons of birds, and that is how the preserved cervical ribs are arrayed–in vertically stacked bundles.
- Each cervical rib is about 4 cm in diameter where it attaches to its vertebra, and tapers to a point about 3 meters away. The last meter or so of each rib goes from being the diameter of a pencil to the diameter of a mechanical pencil lead. They just sort of peter out into nothingness.
- The fact that even the pencil-lead-sized wisps of the cervical ribs are still in articulation suggests pretty strongly that the neck was buried with the muscles intact.
- If the neck had simply been broken transversely (like a guillotine cut), the two most anterior vertebrae in the preserved block of four should have the cervical ribs of even more anterior vertebrae beneath them, and the cervical ribs from the two most posterior vertebrae would not stick out the back of the preserved block.
- The facts that the cervical ribs from the missing anterior vertebrae are also missing, and that the cervical ribs from the preserved vertebrae trail behind the articulated block, suggest that the neck was pulled apart lengthwise, as shown in B.
- None of the vertebrae have any teeth marks or any sign of mechanical damage, other than the missing neural spine from the third preserved vertebra. The front third of the first preserved vertebra was eroded away before the vertebrae were discovered in the field.
- Assuming that Sauroposeidon was built like Brachiosaurus, it must have had a body mass somewhere between 40 and 60 tons. Even if it was built more like Mamenchisaurus—hellacious neck tacked on fairly dinky body–it was still probably a 20-ton critter.
- After 14 years of subsequent erosion and fieldwork, no other sauropod bones have been discovered at the site.
Some questions:
- How did the neck get separated from the body? The body was presumably too big to move, and the neck is too well preserved to have been moved very far.
- What pulled the neck apart?
- How did the neck come apart without disturbing those little pencil-lead cervical rib ends?
I don’t know the answers to those questions, by the way. And I’m open to suggestions.
Here’s my best guess. I think the body stayed put, and the neck floated away. Not far–a few hundred feet would be enough to put the body outside the outcrop area at the holotype site, but not so far that the neck would be all beat up. I think it floated rather than being dragged (by an Acrocanthosaurus, for example) because the vertebrae are all in such good shape and none of them have any tooth marks. I think it floated in calm water because the preservation is so good. I think the neck muscles rotted enough to let the force of the current rip part of the neck away from the base, just like you can pull a cooked chicken neck apart lengthwise without messing up the articulations among the vertebrae in the chunk that breaks free.
All of that will suffice to get the neck separated from the body. What really bugs me is the separation of the anterior part of the neck from the preserved block of vertebrae. It is tempting to think that the anterior part never came off, and that those vertebrae simply eroded away before they were found, like the front third of the most anterior preserved vert. But that can’t be; if those vertebrae were in articulation and just eroded away, we should still have their cervical ribs below the first two preserved verts.
Who knows, maybe the scenario I outlined above is good enough to explain both breaks. For some reason it is just easier to image most of the neck coming off the carcass than to imagine one part of the neck coming off the other part of the neck. But maybe the anteriormost vertebrae were ripped off and floated away first, and then the preserved block came free and floated off on its own later. (The head probably exploded, as these things were wont to do.)
It is worth noting that there are probably only a handful of people alive who have any first-hand experience with how multi-ton animal carcasses are dispersed, and zero people alive who have ever seen a dead sauropod rot. So, like too much in paleontology, what seems plausible or reasonable to me may not line up with objective reality.
BTW, this post fulfills a promise I made in a comment thread here. If we promise a post, we deliver. (We just don’t specify a due date.)
Comments, suggestions, hypotheses, rants, and crank fringe theories welcome.
References:
New paper out today: Aureliano et al. (2022) on vertebral internal structure in the earliest saurischians
December 9, 2022

Micro-computed tomography of the vertebrae of the basalmost sauropodomorph Buriolestes (CAPPA/UFSM 0035). (A) silhouette shows the position of the axial elements. Artist: Felipe Elias. (B), three-dimensional reconstruction of the articulated cervical vertebral series and the correspondent high-contrast density slices in (D–I). Diagenetic processes partially compromised the internal structures in these cervicals. (C), 3D reconstruction of the articulated anterior dorsal vertebrae and the correspondent high-contrast density slices in (J–M). Small circumferential chambers occur both ventrally in the dorsal centrum (J) and laterally in the neural arch pedicles (D). All images indicate apneumatic chaotic trabeculae architecture. Some of the latter develop into larger chambers in the centrum (E,J,K). Nutritional foramina are broader at the bottom of the neural canal in the posterior cervicals (F,G). All slices were taken from the approximate midshaft. Anterior views in (D–H,J,K). Lateral view in (L). Ventral view in (H,I,M). Anterior/posterior orientation was defined based on the axial position, not the anatomical plane. cc circumferential chamber, ccv chamber in the centrum, ctr chaotic trabecula, d diapophysis, ltr layered trabeculae, nc neural canal, nf nutritional foramen, s neural spine. Scale bar in (A) = 500 mm; in (B–M) = 10 mm. Computed tomography data processed with 3D Slicer version 4.10. Figures were generated with Adobe Photoshop CC version 22.5.1 X64. (Aureliano et al. 2022: fig. 4)
Here’s a nice early holiday present for me: 51 weeks after our first paper together, I’m on another one with Tito Aureliano and colleagues:
As before, I’m in the “just happy to be here” last author position, and quite happy to be so, too. I’ve had a productive couple of years, mostly because my colleagues keep inviting me to write a little bit, usually about pneumaticity, in exchange for a junior authorship, and that’s actually a perfect fit for my bandwidth right now. That dynamic has let me work on some cool and varied projects that have broadened my experience in satisfying ways. But enough navel-gazing!
Also as before, Tito made a really nice video that explains our findings from the paper and puts them in their broader scientific context:
For a long time now I’ve been interested in the origin of postcranial skeletal pneumaticity (PSP) in dinosaurs and pterosaurs (e.g., Wedel 2006, 2007, 2009, Yates et al. 2012, Wedel and Taylor 2013) — or is that origins, plural? Tito and crew decided to take a swing at the problem by CT scanning presacral vertebrae from the early sauropodomorphs Buriolestes and Pampadromaeus, and the herrerasaurid Gnathovorax. (Off-topic: Gnathovorax, “jaw inclined to devour”, is such a badass name that I adopted it for an ancient blue dragon in my D&D campaign.) All three taxa have shallow fossae on the lateral sides of at least some of their presacral centra, and some neural arch laminae, so they seemed like good candidates in which to hunt for internal pneumatization.
I’ll cut right to the chase: none of three have internal pneumatic chambers in their vertebrae, so if there were pneumatic diverticula present, they weren’t leaving diagnostic traces. That’s not surprising, but it’s nice to know rather than to wonder. The underlying system of respiratory air sacs could have been present in the ancestral ornithodiran, and I strongly suspect that was the case, but invasive vertebral pneumatization evolved independently in pterosaurs, sauropodomorphs, and theropods.

Detail of the vertebrae and foramina of the basalmost sauropodomorph Buriolestes (CAPPA/UFSM-0035). Cervical (A–C), anterior (D–F) and posterior (G–I) dorsal vertebrae in right lateral view. Note that nutritional foramina are present throughout the axial skeleton (dark arrows). Anterior/posterior orientation was defined based on the axial position, not the anatomical plane. Scale bar = 5 mm. Figures were generated with Adobe Photoshop CC version 22.5.1 X64. (Aureliano et al. 2022: fig. 4).
Just because we didn’t find pneumaticity, doesn’t mean we didn’t find cool stuff. Buriolestes, Pampadromaeus, and Gnathovorax all have neurovascular foramina — small holes that transmitted blood vessels and nerves — on the lateral and ventral aspects of the centra. That’s also expected, but again nice to see, especially since we think these blood vessels provided the template for invasive vertebral pneumatization in more derived taxa.
The findings I’m most excited about have to do with the internal structure of the vertebrae. Some of the vertebrae have what we’re calling a pseudo-polycamerate architecture. The polycamerate vertebrae of sauropods like Apatosaurus have large pneumatic chambers that branch into successively smaller ones. Similarly, some of the vertebrae in these Triassic saurischians have large marrow chambers that connect to smaller trabecular spaces — hence the term ‘pseudo-polycamerate’. This pseudo-polycamerate architecture is present in Pampadromaeus, but not in the slightly older Buriolestes, which has a more chaotic internal organization of trabecular spaces. So even in the apneumatic vertebrae of these early saurischians, there seems to have been an evolutionary trajectory toward more hierarchially-structured internal morphology.

Micro-computed tomography of the vertebrae of the herrerasaurid Gnathovorax (CAPPA/UFSM-0009). (A) silhouette shows the position of the axial elements. Artist: Felipe Elias. (B) 3D reconstruction of the anterior cervical vertebra and the correspondent high-contrast density slices in (D-I). Diagenetic artifacts greatly compromised the internal structures. (C) 3D reconstruction of the articulated posterior cervical vertebrae and the correspondent high-contrast density slices in (J–O). Minerals infilled between trabecular vacancies generate reddish anomalies. All images indicate irregular, chaotic, apneumatic architecture. Note the apneumatic large chambers in the centrum (ccv) and the smaller circumferential chambers at the bottom (cc). All slices were taken from the approximate midshaft. Anterior views in (D,H,I). Right lateral view in (E,L,M). Ventral view in (F,G,J,K). cc circumferential chambers, ccv chamber in the centrum, ce centrum, ctr chaotic trabeculae, d diapophysis, dia diagenetic artifact, nc neural canal, nf nutritional foramen, poz postzygapophysis, prz prezygapophysis. Scale bar in (A) = 1000 mm; in (B–O) = 10 mm. Computed tomography data processed with 3D Slicer version 4.10. Figures were generated with Adobe Photoshop CC version 22.5.1 X64.
But wait, there’s more! We also found small circumferential chambers around the margins of the centra, and what we’re calling ‘layered trabeculae’ inside the articular ends of the centra. These apneumatic trabecular structures look a heck of a lot like the circumferential pneumatic chambers and radial camellae that we described last year in a dorsal vertebra of what would later be named Ibirania (Navarro et al. 2022), and which other authors had previously described in other titanosaurs (Woodward and Lehman 2009, Bandeira et al. 2013) — see this post.
So to quickly recap, in these Triassic saurischians we find external neurovascular foramina from the nerves and vessels that probably “piloted” the pneumatic diverticula (in Mike’s lovely phrasing from Taylor and Wedel 2021) to the vertebrae in more derived taxa, and internal structures that are resemble the arrangement of pneumatic camerae and camellae in later sauropods and theropods. We already suspected that pneumatic diverticula were following blood vessels to reach the vertebrae and produce external pneumatic features like fossae and foramina (see Taylor and Wedel 2021 for a much fuller development of this idea). The results from our scans of these Triassic taxa suggests the tantalizing possibility that pneumatic diverticula in later taxa were following the vascular networks inside the vertebrae as well.

A morphological spectrum of vertebral structure, as I thought of it 15 years ago. The Triassic saurischians described in the new paper by Aureliano et al. 2022 would sit between Arizonasaurus and Barapasaurus. (Wedel 2007: text-fig. 8)
“Hold up”, I can hear you thinking. “You can’t just draw a straight line between the internal structure of the vertebrae in Pampadromaeus, on one hand, and Apatosaurus, or a friggin’ saltasaurine, on the other. They’re at the opposite ends of the sauropodomorph radiation, separated by a vast and stormy ocean of intermediate taxa with procamerate, camerate, and semicamellate vertebrae, things like Barapasaurus, Haplocanthosaurus, Camarasaurus, and Giraffatitan.” That’s true, and the vertebral internal structure in, say, Camarasaurus doesn’t look much like either Pampadromaeus or Ibirania — at least, in an adult Camarasaurus. What about a hatchling, which hasn’t had time to pneumatize yet? Heck, what about a baby Ibirania or Rapetosaurus or Alamosaurus? Nobody knows because nobody’s done that work. There aren’t a ton of pre-pneumatization baby neosauropod verts out there, but there are some. There’s an as-yet-unwritten dissertation, or three, to be written about the vascular internal structure of the vertebrae in baby neosauropods prior to pneumatization, and in adult vertebrae that don’t get pneumatized. If caudal 20 is the last pneumatic vertebra, what does the vascular internal structure look like in caudal 21?

Cervical vertebrae of Austroposeidon show multiple internal plates of bone separated by sheets of camellae. Bandeira et al. (2016) referred to those as ‘camellate rings’, Aureliano et al. (2021) called them ‘internal plates’, and in the new paper (Aureliano et al. 2022) we call similar structures in apneumatic vertebrae ‘layered trabeculae’. (Bandeira et al. 2016: fig. 12)
To me the key questions here are, first, why does the pneumatic internal structure of the vertebrae of titanosaurs like Ibirania — or Austroposeidon, shown just above in a figure from Bandeira et al. (2016) — look like the vascular internal structure of the vertebrae of basal sauropodomorphs like Pampadromaeus? Is that (1) a kind of parallelism or convergence; (2) a deep developmental program that builds vertebrae with sheets of bone separated by circumferential and radial spaces, whether those spaces are filled with marrow or air; (3) a fairly direct ‘recycling’ of those highly structured marrow spaces into pneumatic spaces during pneumatization; or (4) some other damn thing entirely? And second, why is the vertebral internal structure of intermediate critters like Haplocanthosaurus and Camarasaurus so different from that of both Ibirania and Pampadromaeus— do the pneumatic internal structures of those taxa reflect the pre-existing vascular pattern, or are they doing something completely different? That latter question in particular is unanswerable until we know what the apneumatic internal structure is like in Haplocanthosaurus and Camarasaurus, either pre-pneumatization (ontogenetically), or beyond pneumatization (serially), or ideally both.

A Camarasaurus caudal with major blood vessels mapped on, based on common patterns in extant tetrapods. A list of the places where blood vessels enter the bone is also a list of places where sauropod vertebrae can possibly be pneumatized. We don’t think that’s a coincidence. From Mike’s and my presentation last December at the 3rd Palaeo Virtual Congress, and this post. (Wedel and Taylor 2021)
I was on the cusp of writing that the future of pneumaticity is vascular. That’s true, but incomplete. A big part of figuring out why pneumatic structures have certain morphologies is going to be tracing their development, not just the early ontogenetic stages of pneumatization, but the apneumatic morphologies that existed prior to pneumatization. BUT we’re also nowhere near done just doing the alpha-level descriptive work of documenting what pneumaticity looks like in most sauropods. I’ll have more to say about that in an upcoming post. But the upshot is that now we’re fighting a war on two fronts — we still need to do a ton of basic descriptive work on pneumaticity in most taxa, and also need to do a ton of basic descriptive work on vertebral vascularization, and maybe a third ton on the ontogenetic development of pneumaticity, which is likely the missing link between those first two tons.
I’m proud of the new paper, not least because it raises many, many more questions than it answers. So if you’re interested in working on pneumaticity, good, because there’s a mountain of work to be done. Come join us!
References
- Tito Aureliano, Aline M. Ghilardi, Bruno A. Navarro, Marcelo A. Fernandes, Fresia Ricardi-Branco, & Mathew J. Wedel. 2021. Exquisite air sac histological traces in a hyperpneumatized nanoid sauropod dinosaur from South America. Scientific Reports 11: 24207.
- Aureliano, T., Ghilardi, A.M., Müller, R.T., Kerber, L., Pretto, F.A., Fernandes, M.A., Ricardi-Branco, F., and Wedel, M.J. 2022. The absence of an invasive air sac system in the earliest dinosaurs suggests multiple origins of vertebral pneumaticity. Scientific Reports 12:20844. https://doi.org/10.1038/s41598-022-25067-8
- Bandeira KLN, Medeiros Simbras F, Batista Machado E, de Almeida Campos D, Oliveira GR, Kellner AWA (2016) A New Giant Titanosauria (Dinosauria: Sauropoda) from the Late Cretaceous Bauru Group, Brazil. PLoS ONE 11(10): e0163373. https://doi.org/10.1371/journal.pone.0163373
- Navarro, Bruno A.; Ghilardi, Aline M.; Aureliano, Tito; Díaz, Verónica Díez; Bandeira, Kamila L. N.; Cattaruzzi, André G. S.; Iori, Fabiano V.; Martine, Ariel M.; Carvalho, Alberto B.; Anelli, Luiz E.; Fernandes, Marcelo A.; Zaher, Hussam. 2022. A new nanoid titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Brazil. Ameghiniana. 59 (5): 317–354.
- Taylor, Michael P., and Mathew J. Wedel. 2021. Why is vertebral pneumaticity in sauropod dinosaurs so variable? Qeios 1G6J3Q. doi:10.32388/1G6J3Q.5
- Wedel, M.J. 2006. Origin of postcranial skeletal pneumaticity in dinosaurs. Integrative Zoology 2:80-85.
- Wedel, M.J. 2007a. What pneumaticity tells us about ‘prosauropods’, and vice versa. Special Papers in Palaeontology 77:207-222.
- Wedel, M.J. 2009. Evidence for bird-like air sacs in saurischian dinosaurs. Journal of Experimental Zoology 311A:611-628.
- Wedel, Mathew J., and Taylor, Michael P. 2013. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus. PLOS ONE 8(10):e78213. doi:10.1371/journal.pone.0078213
- Wedel, M.J., and Taylor, M.P. 2021. Blood vessels provided the template for vertebral pneumatization in sauropod dinosaurs. 3rd Palaeontological Virtual Congress.
- Woodward, H.N., and Lehman, T.M. 2009. Bone histology and microanatomy of Alamosaurus sanjuanensis (Sauropoda: Titanosauria) from the Maastrichtian of Big Bend National Park, Texas. Journal of Vertebrate Paleontology 29(3):807-821.
- Yates, A.M., Wedel, M.J., and Bonnan, M.F. 2012. The early evolution of postcranial skeletal pneumaticity in sauropodomorph dinosaurs. Acta Palaeontologica Polonica 57(1):85-100. doi: http://dx.doi.org/10.4202/app.2010.0075
Apatosaurus cervical ribs and the tyranny of 2D images
December 8, 2022
Some quick backstory: lots of sauropods have long, overlapping cervical ribs, like the ones shown here in Sauroposeidon (diagram from this old post):
These long cervical ribs are ossified tendons of ventral neck muscles, presumably longus colli ventralis. We know they’re ossified tendons because of their bone histology (Klein et al. 2012), and we suspect that they’re longus colli ventralis because those tendons look the same in birds, just less ossified, as in this rhea (same specimens as these even older posts: 1, 2):
Diplodocoids have apomorphically short cervical ribs, which never extend very far past the end of their respective centra and sometimes don’t overlap at all. Still, we assume the long ventral neck muscles were there, just without long ossified tendons. Which brings me to Apatosaurus, which has cervical ribs that are anteroposteriorly short but famously massive, extending very below and/or to the sides of the cervical centra — for a truly breathtaking example see this post. Here are C3 through C7 in CM 3018, the holotype of Apatosaurus lousiae (Gilmore 1936: plate 24):
At least for me, it’s hard to resist the temptation to mentally scoot those vertebrae together into articulation, and imagine that the very swoopy-looking and maybe even down-turned cervical ribs allowed the ventral tendon bundles to wrap around the bottom of each cervical rib protuberance, something like this:
But it’s just not so, because like all 2D images, Gilmore’s plate distorts 3D reality. If you get to see the mounted skeleton in person, it’s clear that the cervical ribs are all more or less in line, and none of them are pointed at the big protuberances, which stick way out ventrolaterally.
Here I’ve drawn in the likely trajectories of the longus colli ventralis tendons. My little red pathways don’t precisely match the cervical ribs as mounted, but there’s a lot of distortion and restoration going on. For example, comparing with Gilmore’s plate we can see that the cervical ribs of C5, which point downward compared to all the others, only do that because someone forced them to — the whole anterior portion of the rib, where the shaft would actually join to the capitulum and tuberculum, is reconstructed. Even if I’m a little off, it’s clear that the cervical ribs shafts point backward, they’re all more or less in two parallel lines, and none of them point down and out toward the ventrolateral processes. The photo contains a mountain of useful morphological information that you’d never get from the lateral views.
My takeaways from all this:
- If a person has only seen 2D images of a specimen, and especially if those 2D images have only been orthogonal views with no obliques, their little island of knowledge is surrounded by at least a sizeable lake of ignorance, if not a small ocean.
- That doesn’t mean that seeing specimens in person is the only antidote — 3D models and 3D prints are extremely useful, and for specimens that are difficult to manipulate because of their size or fragility, they may be more useful than seeing or handling the specimen, at least for some questions.
- For Apatosaurus specifically, those ventrolateral processes cry out for explanation. They’re fairly solid knobs of bone that stick way out past the ossified tendons of the ventral-most neck muscles. That’s a super-weird — and super-expensive — place to invest a bunch of bone if you’re not using it for something fairly important, especially in a lineage that had just spent the last 80-100 million years making their necks as light as possible.
- Pursuant to that last point, we’re now in — ugh-ouch-shame — our 8th year of BrontoSMASH!!, with still just the one conference presentation to show for it (Taylor et al. 2015). Prolly time we got moving on that again.
References
- Klein, N., Christian, A., & Sander, P. M. (2012). Histology shows that elongated neck ribs in sauropod dinosaurs are ossified tendons. Biology letters, 8(6), 1032-1035.
- Taylor, M.P., Wedel, M.J., Naish, D., and Engh, B. 2015. Were the necks of Apatosaurus and Brontosaurus adapted for combat? 63rd Symposium on Vertebrate Palaeontology and Comparative Anatomy, Meeting Proceedings, p. 71, and PeerJ PrePrints 3:e1347v1. https://doi.org/10.7287/peerj.preprints.1347v1
3D printing is especially useful for sauropod workers
September 28, 2022
This is the first 3D print of a dinosaur bone that I ever had access to: the third caudal vertebra of MWC 8028, the ‘new’ Haplocanthosaurus specimen from Snowmass, Colorado (Foster and Wedel 2014, Wedel et al. 2021). I’ve been carrying this thing around since 2018. It’s been an aid to thought. I touched on this before, in this post, but real sauropod vertebrae are almost always a giant pain to work with, given their charming combination of great weight, fragility, and irreplaceability. As opposed to scaled 3D prints, which are light, tough, and endlessly replaceable.
This was brought home to me again a couple of weeks ago, when I visited the Carnegie Museum, in Pittsburgh, Pennsylvania, and Research Casting International, in Trenton, Ontario, Canada. I was at each place to have another look at their haplocanthosaur specimens. The Carnegie is of course the home of CM 572, the type of H. priscus, and CM 879, the type of H. utterbacki (which has long been sunk into H. priscus, and rightly so — more on that another time, perhaps). RCI currently has CMNH 10380, the holotype of H. delfsi, for reprepping and remounting before it goes back to the Cleveland Museum of Natural History.
The caudals of CM 572 and CM 879 aren’t that different in size — the centra max out at about 20cm (8in) in diameter, and the biggest, caudal 1 of CM 572, is 50cm (20in) tall. Still, given their weight and the number of thin projecting processes that could possibly break off, I handled them gingerly.
The caudals of H. delfsi are a whole other kettle of fish. Caudal 1 has a max diameter of 36cm (14in) and a total height of 85cm (33.5in). I didn’t handle that one by myself unless I absolutely had to. Fortunately Garth Dallman of RCI helped a lot with the very literal heavy lifting, as did fellow researcher Brian Curtice, who was there at the same time I was.
Back to my beloved MWC 8028, the Snowmass haplocanthosaur. My colleagues and I are still working on it, and there will be more papers coming down the pike in due time (f’rinstance). I’m pretty sure that the main reason we’ve been able to get so much mileage out of this mostly incomplete and somewhat roadkilled specimen is that we’ve had 3D prints of key bones to play with. Now, I joke all the time about being a grownup who gets paid to play with dinosaur bones, but for once I’m not writing in jest when I say ‘play with’. That 3D printed caudal is basically a dinosaurian fidget toy for me, and I think it’s probably impossible to play with anatomical specimens without getting interested in their nooks and crannies and bits and bobs.
Another nice thing about it: I can throw it in my luggage, take it Oklahoma or Utah or Pennsylvania or Canada, and just plop it in someone’s hand and say, “Look at this weird thing. Have you ever seen that before?” I have done that, in all of those places, and it’s even more convenient and useful than showing CT slices on my laptop. I’ve watched my friends and colleagues run their fingers over the print, pinch its nearly non-existent centrum, poke at its weird neural canal, and really grokk its unusual morphology. And then we’ve had more productive conversations than we would have otherwise — they really Get It, because they’ve really handled it.
When I started writing this post, the title was a question, but that’s tentative to the point of being misleading. Three-D prints are obviously useful for sauropod workers because with very few exceptions our specimens are otherwise un-play-with-able. And playing with dinosaur bones turns out to be a pretty great way to make discoveries, and to share them.
(And yes, we’ll be publishing the CT scans and 3D models of MWC 8028 in due time, so you can play with it yourself.)
References
- Foster, J.R., and Wedel, M.J. 2014. Haplocanthosaurus (Saurischia: Sauropoda) from the lower Morrison Formation (Upper Jurassic) near Snowmass, Colorado. Volumina Jurassica 12(2): 197–210. DOI: 10.5604/17313708 .1130144
- Wedel, Mathew; Atterholt, Jessie; Dooley, Jr., Alton C.; Farooq, Saad; Macalino, Jeff; Nalley, Thierra K.; Wisser, Gary; and Yasmer, John. 2021. Expanded neural canals in the caudal vertebrae of a specimen of Haplocanthosaurus. Academia Letters, Article 911, 10pp. DOI: 10.20935/AL911
My talk on Oklahoma Morrison dinosaurs is now on YouTube
April 1, 2022
Last Thursday I gave a public lecture for the No Man’s Land Historical Society in the Oklahoma Panhandle, titled “Oklahoma’s Jurassic Giants: the Dinosaurs of Black Mesa”. It’s now on YouTube, on the No Man’s Land Museum’s channel.
There’s a point I want to make here, that I also made in the talk: we can’t predict the value of natural history collections. The first sauropod vertebrae that Rich Cifelli and Kent Sanders and I CT scanned back in the spring of 1998 belonged to what would become Sauroposeidon, but most of the ones we scanned after that were Morrison specimens collected by J. Willis Stovall’s crews from the Oklahoma Panhandle between 1934 and 1941. Those scans formed the core of the pneumaticity research that fleshed out the Sauroposeidon papers (Wedel et al. 2000a, b), and was more fully developed in my Master’s thesis and the papers that came out of that (Wedel 2003a, b).

OMNH 1094, a mid-cervical vertebra of Brontosaurus in right lateral view. If you’ve seen one of my talks or my first few papers, you’ve seen this vert. I just realized that I have almost all the photos I need to do a proper multi-view; stand by for a future post on that.
So the foundation of my career was built in large part from collections that had been made 60 years earlier, decades before CT was invented. I’ll also note here that Xenoposeidon — Mike’s fourth paper (Taylor and Naish 2007), but the one which really launched his career as a morphologist — is based on a specimen collected in the 1890s. Natural history collections are not only resources for making comparisons, but also the engines of future discovery, and building and maintaining them is one of the most significant contributions to science that we can make.
I thank a bunch of folks at the end of the talk, but I especially want to thank Brian Engh for the use of his art, and Anne Weil for inviting me to collaborate on the sauropod material from the Homestead Quarry. Looking forward to more adventures!
References
- Taylor, Michael P., and Darren Naish. 2007. An unusual new neosauropod dinosaur from the Lower Cretaceous Hastings Beds Group of East Sussex, England. Palaeontology 50(6):1547-1564.
- Wedel, M.J. 2003a. Vertebral pneumaticity, air sacs, and the physiology of sauropod dinosaurs. Paleobiology 29:243-255.
- Wedel, M.J. 2003b. The evolution of vertebral pneumaticity in sauropod dinosaurs. Journal of Vertebrate Paleontology 23:344-357.
- Wedel, M.J., Cifelli, R.L., and Sanders, R.K. 2000a. Sauroposeidon proteles, a new sauropod from the Early Cretaceous of Oklahoma. Journal of Vertebrate Paleontology 20:109-114.
- Wedel, M.J., Cifelli, R.L., and Sanders, R.K. 2000b. Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica Polonica 45:343-388.

Morphological variation in paramedullary airways; yellow = spinal cord, green = diverticula. The spectrum of variation is discretized into four groups: i, branches of intertransverse diverticula contact spinal cord at intervertebral joints; ii, branches of intertransverse diverticula extend partially into the vertebral canal, but remain discontinuous; iii, paramedullary diverticula form sets of tubes that are continuous through vertebral canals of at least two consecutive vertebrae; iv, continuous paramedullary diverticula anastomose with supravertebral diverticula. Each variant is depicted diagrammatically (A, dorsal view; B, E, H, & K, transverse view) and shown in two CT scans; images in each column correspond to the same morphology. Morphology i: C, cormorant; D, scrub jay. Morphology ii: F, bushtit; G, common murre. Morphology iii: I, red-tailed hawk; J, black-crowned night heron. Morphology iv: L, M, pelican. (Atterholt and Wedel 2022: figure 5)
New paper out:
Quick aside, which will soon be of historical interest only: so far, only the accepted-but-unformatted manuscript is available, with the final, fully-formatted ‘version of record’ due along at some point in the future. We’re not sure when that will be — could be next week, could be months from now — which is why I’m following my standard procedure and yapping about the new paper now. This has paid off in the past, when papers that were only available in accepted ms form were read and cited before the final version was published. UPDATE on April 9: the formatted version of record is out now, as an open-access article with a CC-BY license, and I swapped it for the ‘accepted ms’ version in the links above and at the end of this post.
This paper has had a weirdly drawn-out gestation. Jessie and I hatched the idea of it way back in 2017, when we were teaching in the summer anatomy course together. I learned that Jessie had a big war chest of CTs of dead birds, and I’d been obsessed with supramedullary diverticula in birds and sauropods for some time already (e.g., an SVPCA talk: Wedel et al. 2014). There were detailed published descriptions of the supramedullary diverticula in a handful of species — namely chickens, turkeys, and pigeons — but no broad survey of those diverticula across living birds. Jessie had the CT scans to do that big survey, which we got rolling on right away. She presented our preliminary results at SVPCA in 2018 (Atterholt and Wedel 2018), and by rights the paper should have been along shortly thereafter. More on that in a sec.
One thing that may seem odd: we use the term ‘paramedullary diverticula’ instead of the more familiar and established ‘supramedullary diverticula’. That’s because these diverticula are not always dorsal to the spinal cord; sometimes they’re lateral, sometimes they’re ventral, and sometimes they completely surround the spinal cord, like an inflated cuff. So we decided that the term ‘paramedullary’, or ‘next to the spinal cord’, was more accurate than ‘supramedullary’, or ‘above the spinal cord’, for describing this class of diverticula.

Observed variation in the shape, arrangement, and orientation of paramedullary diverticula relative to the spinal cord; yellow = spinal cord, green = diverticula. A, paired diverticula dorsal to spinal cord in an ostrich. B, paired diverticula lateral to spinal cord in a bushtit. C, paired diverticula ventral to spinal cord in a violet turaco. D, three diverticula dorsal to spinal cord in an ostrich. E, four diverticula dorsal to spinal cord in an eclectus parrot. F, single, c-shaped diverticulum dorsal to spinal cord in an ostrich. G, diverticula completely surrounding spinal cord and pneumatizing vertebra in a violet turaco. H, no paramedullary diverticula present in a Pacific loon. I, diverticula completely surrounding spinal cord in a pelican. (Atterholt and Wedel 2022: figure 6)
I will have more to say about the science in other posts, and you can get the scientific backstory in this post and this one and the abstracts cited above and linked below. The rest of this post is mostly about me, so if you stick around, buckle up for some advanced navel-gazing.
There’s no one reason why this paper didn’t come out sooner. In short, I hit a wall. We went through a curriculum change at work, and suddenly the annual schedule that I’d relied on for a decade was completely upended. I had some unexpected challenges in my personal life. But the biggest problem was that my attitude toward research and writing had changed, for the worse.
When I was fresh out of grad school I had this kinda snotty attitude that my research was MINE, and wherever I was teaching was just, like, a paycheck, man, but they don’t own me, or my research. And as my teaching and committee responsibilities ramped up I still felt like research and writing was something I did for myself, and that my mission was to steal however many hours I could away from the “day-job work” to get done the things that I really wanted to do. Like a guerilla insurgency. In retrospect, it was a pretty good attitude for getting stuff done.
But somewhere along the way, I stopped thinking about research as something that belonged to me, something that I did for myself, and started thinking about it as part of my job. (This also maybe is not so flattering in what it reveals about how I think, or at least thought, about my job.) Instead of using my research time as a source of energy and a wellspring of satisfaction and positivity, I starting thinking of it only as a sink. And it happened so insidiously that I didn’t even realize it. My productivity plummeted, and I didn’t understand why. I was restless and depressed, and I didn’t understand that either. At the level of my superficial thoughts I still wanted to get research done, but my subconscious was turned off to it, so I just spun my wheels.
Then the pandemic hit. I’d always been a pretty optimistic, upbeat person, but I found myself just staring off into space franticizing about all the horrible things going on in the world, or staying up too late doom-scrolling the news. I slept too little, and poorly, and by the end of 2020 I felt worn down to a nub.

Osteological evidence of paramedullary diverticula. A, pocked texturing inside the vertebral canal of a pelican (LACM 86262). B, pneumatic foramen on the roof of the vertebral canal of an albatross (Phoebastria nigripes, LACM 115139). C, pneumatic foramina in the floor of the vertebral canal of an ostrich (Struthio camelus, LACM 116205). D, deep pneumatic fossae in the roof of the vertebral canal of an Eastern moa (Emeus sp., LACM unnumbered). (Atterholt and Wedel 2022: figure 7)
Then a series of positive things happened:
- I received a long, heartfelt email from Jessie (fittingly!), asking after me and laying out a plan for getting the paper done and out. It was the kick I needed to look inside and start picking myself apart, to figure out what the heck was going on. Much of this post is cribbed from my reply to her.
- I got a little break from lecturing in the spring of 2021, and that gave me the space to get a couple of things finished and submitted — the pneumatic variation paper with Mike in January (Taylor and Wedel 2021), and the Haplocanthosaurus neural canal paper, which was submitted even earlier in January, although it came out much later (Wedel et al. 2021; more on that publication delay in a future post).
- Finally, I had young, energetic coauthors who were moving projects forward that required modest levels of effort from me, but which paid off with highly visible publications that I’m proud to be an author on, including the saltasaur pneumaticity paper (Aureliano et al. 2021) and the ‘Sauro-Throat’ paper (Woodruff et al. 2022).
It’s impossible to overstate how energizing it was to get new things done and out, and how much it helped to have collaborators who were putting wins on the board even when I was otherwise occupied. One of those collaborators was Jessie, who just kept pushing this thing forward — and, sometimes, pushing me forward — until it was done. So the paper you can read today is a testament not only to her acumen as a morphologist, but also to her tenacity as a scholar, and as a friend.
The part of the paper I’m happiest about is the “Conclusions and Directions for Future Research”, which points the way toward a LOT of further studies that need to be done, both on extant birds and on fossil archosaurs, ranging from bone histology to functional morphology to macroevolution. As we wrote in the concluding sentence of the paper, “We hope that this study serves as a foundation and an enticement for further studies of this most unusual anatomical system, in both extinct and extant archosaurs.”
I can’t wait to see what comes next.
References
- Atterholt, J., and Wedel, M. 2018. A CT-based survey of supramedullary diverticula in extant birds. 66th Symposium on Vertebrate Palaeontology and Comparative Anatomy, Programme and Abstracts, p. 30.
- Atterholt, Jessie, and Wedel, Mathew J. 2022. A computed tomography-based survey of paramedullary diverticula in extant Aves. The Anatomical Record, 1– 22. https://doi.org/10.1002/ar.24923
- Aureliano, Tito, Aline M. Ghilardi, Bruno A. Navarro, Marcelo A. Fernandes, Fresia Ricardi-Branco, & Mathew J. Wedel. 2021. Exquisite air sac histological traces in a hyperpneumatized nanoid sauropod dinosaur from South America. Scientific Reports 11: 24207.
- Taylor, Michael P., and Mathew J. Wedel. 2021. Why is vertebral pneumaticity in sauropod dinosaurs so variable? Qeios 1G6J3Q. doi:10.32388/1G6J3Q.5
- Wedel, M.J., Fiorillo, A., Maxwell, D., and Tykoski, R. 2014. Pneumatic diverticula associated with the spinal cord in birds, sauropod dinosaurs, and other ornithodiran archosaurs. 62nd Symposium on Vertebrate Palaeontology and Comparative Anatomy, Meeting Proceedings, p. 60.
- Wedel, Mathew; Atterholt, Jessie; Dooley, Jr., Alton C.; Farooq, Saad; Macalino, Jeff; Nalley, Thierra K.; Wisser, Gary; and Yasmer, John. 2021. Expanded neural canals in the caudal vertebrae of a specimen of Haplocanthosaurus. Academia Letters, Article 911, 10pp. DOI: 10.20935/AL911
- Woodruff, D. Cary, Wolff, Ewan D.S., Wedel, Mathew J., Dennison, Sophie, and Witmer, Lawrence M. 2022. The first occurrence of an avian-style respiratory infection in a non-avian dinosaur. Scientific Reports 12, 1954. https://doi.org/10.1038/s41598-022-05761-3