This post started out as a comment on this thread, kicked off by Dale McInnes, in which Mike Habib got into a discussion with Mike Taylor about the max size of sauropods. Stand by for some arm-waving. All the photos of outdoor models were taken at Dino-Park Münchehagen back in late 2008.
I think it’s all too easy to confuse how big things do get from how big they could get, assuming different selection pressures and ecological opportunities. I’m sure someone could write a very compelling paper about how elephants are as big as they could possibly be, or Komodo dragons, if we didn’t have indricotheres and Megalania to show that the upper limit is elsewhere. This is basically what Economos (1981) did for indricotheres, either forgetting about sauropods or assuming they were all aquatic.
In fact, I’ll go further: a lot of pop discussions of sauropod size assume that sauropods got big because of external factors (oxygen levels, etc.) but were ultimately limited by internal factors, like bone and cartilage strength or cardiovascular issues. I think the opposite is more likely: sauropods got big because of a happy, never-repeated confluence of internal factors (the Sander/et al. [2008, 2011, 2013] hypothesis, which I think is extremely robust), and their size was limited by external, ecological factors.
Take a full-size Argentinosaurus or Bruhathkayosaurus – even modest estimates put them at around 10x the mass of the largest contemporary predators. Full-grown adults were probably truly predator-immune, barring disease or senescence. So any resources devoted to pushing the size disparity higher, instead of invested in making more eggs, would basically be wasted.
If there was reproductive competition among the super-giants, could the 100-tonners have been out-reproduced by the 70-tonners, which put those extra 30 tonnes into making babies? Or would the 100-tonners make so many more eggs than the 70-tonners (over some span of years) that they’d still come out on top? I admit, I don’t know enough reproductive biology to answer that. (If you do, speak up in the comments!) But if – if – 70-tonners could out-reproduce 100-tonners, that by itself might have been enough to put a cap on the size of the largest sauropods.
Another possibility is that max-size adult sauropods were neither common nor the target of selection. In most populations most of the time, the largest individuals might have been reproductively active but skeletally-immature and still-growing subadults (keep in mind that category would encompass most mounted sauropod skeletons, including the mounted brachiosaurs in Chicago and Berlin). If such individuals were the primary targets of selection, and they were selected for a balance of reproductive output and growth, then the few max-size adults might represent the relatively rare instances in which the developmental program “overshot” the selection target.
Dave Hone and Andy Farke and I mentioned this briefly in our 2016 paper, and it’s come up here on the blog several times before, but I still have a hard time wrapping my head around what that would mean. Maybe the max-size adults don’t represent the selective optimum, but rather beneficial traits carried to extreme ends by runaway development. It seems at least conceivable that the bodies of such animals might have been heavily loaded with morphological excrescences – like 15- to 17-meter necks – that were well past the selective optimum. As long as those features weren’t inherently fatal, they could possibly have been pretty darned inefficient, riding around on big predator-immune platforms that could walk for hundreds of kilometers and survive on garbage.
What does that swerve into weird-but-by-now-well-trod ground have to do with the limits on sauropod size? This: if max-size adults were not heavy selection targets, either because the focus of selection was on younger, reproductively-active subadults, or because they’d gotten so big that the only selection pressure that could really affect them was a continent-wide famine – or both – then they might not have gotten as big as they could have (i.e., never hit any internally-imposed, anatomical or biomechanical limits) because nothing external was pushing them to get any bigger than they already were.
Or maybe that’s just a big pile of arm-wavy BS. Let’s try tearing it down, and find out. The comment thread is open.
References
- Economos, A.C. 1981. The largest land mammal. Journal of Theoretical Biology 89(2):211-214.
- Hone, D.W.E., Farke, A.A., and Wedel, M.J. 2016. Ontogeny and the fossil record: what, if anything, is an adult dinosaur? Biology Letters 2016 12 20150947; DOI: 10.1098/rsbl.2015.0947.
- Sander, P.M. and Clauss, M. 2008. Sauropod gigantism. Science 322(5899):200-201.
- Sander, P.M., Christian, A., Clauss, M., Fechner, R., Gee, C.T., Griebeler, E.M., Gunga, H.C., Hummel, J., Mallison, H., Perry, S.F. and Preuschoft, H. 2011. Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86(1):117-155.
- Sander, P.M. 2013. An evolutionary cascade model for sauropod dinosaur gigantism-overview, update and tests. PLoS One, 8(10) p.e78573.
Poll: sauropod vertebra picture of the decade
October 2, 2017
I can’t even count how many sauropod vertebra pictures we’ve posted here across the last ten years, but I am confident that the total comes to at least a lot. Here’s a picture from each year of the blog’s existence so far — let’s vote on which is the best!
November 15, 2007: Xenoposeidon week, day 1: Introducing Xeno

The stark beauty of the Xenoposeidon proneneukos holotype NHMUK R2095, a mid-to-posterior partial dorsal vertebra in left and right lateral views.
February 1, 2008: Your neck is pathetic

Sauroposeidon proteles holotype OMNH 53062, 8th cervical vertebra in left lateral view (1400 mm total length). Entire human neck for scale.
January 7, 2009: The sauropods of Star Wars: Special Edition
February 12, 2010: Tutorial 8: how to photograph big bones

The Archbishop in all its glory. The much-loved dorsals 8 and 9, in right lateral view, of the Tendaguru brachiosaurid NHMUK R5937.
May 16, 2011: Why the long necks? Probably not sexual selection

Taylor et al. (2011), fig. 1: Sauropod necks, showing relationships for a selection of species, and the range of necks lengths and morphologies that they encompass. Phylogeny based on that of Upchurch et al. (2004: fig. 13.18). Mamenchisaurus hochuanensis (neck 9.5 m long) modified from Young & Zhao (1972: fig. 4); Dicraeosaurus hansemanni (2.7 m) modified from Janensch (1936: plate XVI); Diplodocus carnegii (6.5 m) modified from Hatcher (1903: plate VI); Apatosaurus louisae (6 m) modified from Lovelace, Hartman & Wahl (2008: fig. 7); Camarasaurus supremus (5.25 m) modified from Osborn & Mook (1921: plate 84); Giraffatitan brancai (8.75 m) modified from Janensch (1950: plate VIII); giraffe (1.8 m) modified from Lydekker (1894:332). Alternating grey and white vertical bars mark 1 m increments.
April 15, 2012: Neural spine bifurcation in sauropods, Part 6: more reasons why Haplocanthosaurus is not a juvenile of a known diplodocid

Wedel 2009: Fig. 6. Pneumatization of the presacral vertebrae in Haplocanthosaurus. (A) X-ray image of a posterior cervical vertebra of CM 879 in right lateral view. (B) A CT slice through the same vertebra. (C) X-ray image of an anterior dorsal vertebra of CM 572 in left lateral view. (D) X-ray image of the same vertebra in anterior view.
January 16, 2013: Plateosaurus is pathetic

Our old friend C8 of the Giraffatitan brancai paralectotype MB.R.2181 in left dorsolateral view, with a comparable cervical of the prosauropod Plateosaurus for scale.
February 12, 2014: Can PeerJ really be only a year old?

Barosaurus lentus holotype YPM 429, Vertebra Q (C?13). Top row: left ventrolateral view. Middle row, from left to right: anterior view, with ventral to the right; ventral view; posterior view, with ventral to the left. Bottom row: right lateral view, inverted. Inset shows diapophyseal facet on right side of vertebra, indicating that the cervical ribs were unfused in this individual despite its great size. Note the broad, flat prezygapophyseal facet visible in anterior view. (Taylor and Wedel 2013b: figure 6)
September 14, 2015: So what were apatosaurs doing with their crazy necks?

A slide from our 295 SVPCA talk, illustrating key points in apatosaurine neck morphology that led us to the BRONTOSMASH hypothesis.
May 18, 2016: Thank you to all our Sauropocalypse hosts!
August 15, 2017: “Biconcavoposeidon”

AMNH FARB 291, five consecutive posterior dorsal vertebrae of a probably brachiosaurid sauropod which we informally designate “Biconcavoposeidon”, in right lateral view.
(Yes, there are eleven pictures: we’ve been running for ten years, but that includes both the end of 2007 and the start of 2017.)
So, which is the picture of the decade? Vote here (and let us know in the comments if we missed your favourite).
Over the years, I’ve accumulated quite a few sauropod-themed mugs, most of them designed by myself and relating to papers that I’ve been involved with. Here are most of them (plus a bonus):
From left to right (and in chronological order):
- The Sauroposeidon mug that Matt made back in 2000 or so.
- The first one I created myself: an Archbishop mug, showing the posterior dorsal vertebra pair D?8-9 — foolishly, in monochrome.
- Xenoposeidon, of course, created in celebration of its publication.
- The whole of my dissertation, printed very very small.
- The introductory here’s-what-sauropod-necks-are-like illustration from our 2011 paper on why those necks were not sexually selected.
Not pictured: the Brontomerus mug. I made three of these: one each for the three authors of the paper. I’m not sure where mine has gone — I don’t think I’ve seen it for a long time. (If Matt still has his, maybe he can add a photo to this post.)
(Bonus: on the right hand side, the world’s only DRINK TEA YOU MORONS mug. I made it as a gift for my son Matthew, who is a huge fan of Bob The Angry Flower (as am I). It’s based on this this strip.)
Taylor (2022) on incomplete necks
October 6, 2015
The paper
Preprint on PeerJ
An earlier version of this paper was made available as PeerJ Preprint:
SV-POW! posts
- My most depressing paper
- The 14 beautiful cervicals of Kaatedocus
- Why do we have so few complete, undistorted sauropod necks?
- Copyright: promoting the Progress of Science and useful Arts by preventing access to 105-year-old quarry maps
- Should we still give taxonomic authorities?
- Towards a catalogue of complete sauropods necks
- The catalogue of complete sauropods necks nears completion
- Analysing the distribution of complete sauropod necks
- Help me, stats people!
- What’s the difference between a cervical and dorsal vertebra?
- A six-year quest is finally complete! Almost all known sauropod necks are incomplete and distorted
- Case study: the conception, slooow gestation, and birth of the incomplete-necks paper
Media coverage
High-resolution figures
WARNING: these are out of date versions from the preprint. I need update them reflect the final published version of the paper.

Taylor 2015: Figure 1. Spinophorosaurus nigerensis holotype GCP-CV-4229 in situ during excavation in the region of Aderbissinat, Thirozerine Dept., Agadez Region, Republic of Niger. Reproduced from Remes et al. (2009: figure 1).

Taylor 2015: Figure 2. Neck of Diplodocus carnegii holotype CM 84, as reconstructed by Hatcher (1901: plate XIII), with fifteen undamaged cervical vertebrae.

Taylor 2015: Figure 3. W. H. Reed’s diagram of Quarry C near Camp Carnegie on Sheep Creek, in Albany County, Wyoming. The coloured bones belong to CM 84, the holotype of Diplodocus carnegii; other bones belong to other individuals, chiefly of Brontosaurus, Camarasaurus and Stegosaurus. Modified (cropped and coloured) from Hatcher (1901: plate I). Cervical vertebrae are purple (and greatly simplified in outline), dorsals are red, the sacrum is orange, caudals are yellow, limb girdle elements are blue, and limb bones are green.

Taylor 2015: Figure 4. Three images of presacral vertebra 6 (probably dorsal 7) of Brachiosaurus altithorax holotype FMNH P25107, in right lateral view, showing misleading restoration. Left: Field Museum photograph CSGEO16166, photographer Charles Carpenter, taken in 1905, the year after Riggs’s (1904) descriptive monograph. Note the “crazy-paving” effect of the many cracks and missing areas of bone surface. Middle: Illustration of the same vertebra in Riggs (1904: plate LXXII). Note that the damage to the vertebral surface is not depicted. Right: photograph of the same vertebra, taken by the author in 2005. Note that the damage apparent in the 1905 photograph is no longer visible: the vertebra seems to have been painted to conceal its incompleteness.

Taylor 2015: Figure 5. Quarry map of Tendaguru Site S, Tanzania, showing incomplete and jumbled skeletons of Giraffatitan brancai specimens MB.R.2180 (the lectotype, formerly HMN SI) and MB.R.2181 (the paralectotype, formerly HMN SII). Anatomical identifications of SII are underlined. Elements of SI could not be identified with certainty. From Heinrich (1999: figure 16), redrawn from an original field sketch by Werner Janensch.

Taylor 2015: Figure 6. Sequences of cervical vertebrae of extant animals, showing that articular facet shape remains similar along the column. Top. Cervical vertebrae 3–7 of a mature savannah monitor lizard, Varanus exanthematicus, in anterior view. (The cervicals of monitor lizards, unlike those of sauropods and most mammals, are procoelous, with the anterior facet being concave and the posterior convex.) Bottom. cervical vertebrae 2–5 of a mature house-cat, Felis catus, in posterior view. All photographs by the author, of specimens in his personal collection.

Taylor 2015: Figure 7. Cervical vertebrae of a baby giraffe, Giraffa camelopardalis, in posterior view. Top row, left to right: cervicals 7, 6 and 5; bottom row, left to right: cervicals 4, 3 and 2. Despite changes in the vertebrae along the column, the flattened pentagon shape of the articular facets remains similar along the sequence. (Note that extensive cartilage caps existed on the articular facets of this very young specimen, but were lost in preparation.) Photograph by the author, of a specimen in his personal collection.

Taylor 2015: Figure 8. Cervical vertebrae 4 (left) and 6 (right) of Giraffatitan brancai lectotype MB.R.2180 (formerly HMN SI), in posterior view. Note the dramatically different aspect ratios of their cotyles, indicating that extensive and unpredictable crushing has taken place. Photographs by the author.

Taylor 2015: Figure 9. Cervical vertebrae 14 (left) and 13 (right) of Diplodocus carnegii holotype CM 84, in posterior view. Note the dramatically different aspect ratios of their cotyles, indicating that extensive and unpredictable crushing has taken place.

Taylor 2015: Figure 10. Manipulation of consecutive sauropod vertebrae by hand. Cervicals 2 and 3 of Giraffatitan brancai lectotype MB.R.2181 (formerly HMN SI). I attempted to articulate these two vertebrae, and empirically determine the feasible range of motion. Due to subtle distortion of the zygapophyses of these vertebrae, it was not possible to articulate C2 in a more extended position relative to C3 than shown here. Photograph by Mathew J. Wedel.
So what were apatosaurs doing with their crazy necks?
September 14, 2015
We’ve noted that the Taylor et al. SVPCA abstract and talk slides are up now up as part of the SVPCA 2015 PeerJ Collection, so anyone who’s interested has probably taken a look already to see what it was about. (As an aside, I am delighted to see that two more abstracts have been added to the collection since I wrote about it.)
It was my privilege to present a talk on our hypothesis that the distinctive and bizarre toblerone-shaped necks of apatosaurs were an adaptation for intraspecific combat. This talk was based on an in-progress manuscript that Matt is lead-authoring. Also on board is the third SV-POW!sketeer, the silent partner, Darren Naish; and artist/ethologist Brian Engh.
Here is our case, briefly summarised from five key slides. First, let’s take a look at what is distinctive in the morphology of apatosaur cervicals:
Here I’m using Brontosaurus, which is among the more extreme apatosaurs, but the same features are seen developed to nearly the same extent in Apatosaurus louisae, the best-known apatosaur, and to some extent in all apatosaurs.
Now we’ll look at the four key features separately.
First, the cervicals ribs of sauropods (and other saurischians, including birds) anchored the longus colli ventralis and flexor colli lateralis muscles — ventral muscles whose job is to pull the neck downwards. By shifting the attachments points of these muscles downwards, apatosaurs enabled them to work with improved mechanical advantage — that is, to bring more force to bear.
Second, by redirecting the diapophyses and parapophyses ventrally, and making them much more robust than in other sauropods, apatosaurs structured their neck skeletons to better resist ventral impacts.
Third, because the low-hanging cervical ribs created an inverted “V” shape below the centrum, they formed a protective cradle for the vulnerable soft-tissue that is otherwise exposed on the ventral aspect of the neck: trachea, oesophagus, major blood vessels. In apatosaurus, all of these would have been safely wrapped in layers of connective tissue and bubble-wrap-like pneumatic diverticula. The presence of diverticula ventral to the vertebral centrum is not speculative – most neosauropods have fossae on the ventral surfaces of their cervical centra, and apatosaurines tend to have foramina that connect to internal chambers as well (see Lovelace et al. 2007: fig. 4, which is reproduced in this post).
Fourth, most if not all apatosaurs have distinctive ventrally directed club-like processes on the front of their cervical ribs. (It’s hard to tell with Apatosaurus ajax, because the best cervical vertebra of that species is so very reconstructed.) How did these appear in life? It’s difficult to be sure. They might have appeared as a low boss; or, as with rhinoceros horns, they might even have carried keratinous spikes.
Putting it all together, we have an animal whose neck can be brought downwards with great force; whose neck was mechanically capable of resisting impacts on its ventral aspect; whose vulnerable ventral-side soft-tissue was well protected; and which probably had prominent clubs or spikes all along the ventral aspect of the neck. And all of this was accomplished at the cost of making the neck a lot heavier than it would have been otherwise. Off the cuff, it seems likely that the cervical series alone would have massed twice as much in apatosaurines as in diplodocines of the same neck length.
Doubling the mass of the neck is a very peculiar thing for a sauropod lineage to do – by the Late Jurassic, sauropods were the leading edge of an evolutionary trend to lengthen and lighten the neck that had been running for almost 100 million years, through basal ornithodirans, basal dinosauromorphs, basal saurischians, basal sauropodomorphs, and basal sauropods. Whatever the selective pressures that led apatosaurines to evolve such robust and heavy necks, they must have been compelling.
The possibility that apatosaurs were pushing or crashing their necks ventrally in some form of combat accounts for all of the weird morphology documented above, and we know that sexual selection is powerful force that underlies a lot of bizarre structures in extant animals, and probably in extinct ornithodirans as well (see Hone et al. 2012, Hone and Naish 2013).
What form of combat, exactly? There are various possibilities, which we’ll discuss another time. But I’ll leave you with Brian Engh’s beautiful illustration of one possible form of combat: a powerful impact of one neck brought down onto the dorsal aspect of another.
We’re aware that this proposal is necessarily somewhat speculative. But we’re just not able to see any other explanation for the distinctive apatosaur neck. Even if we’re wrong about the ventrolateral processes on the cervical ribs supporting bosses or spikes, the first three points remain true, and given how they fly in the face of sauropods’ long history of making their necks lighter, they fairly cry out for explanation. If anyone has other proposals, we’ll be happy to hear them.
References
- Hone, D. W., Naish, D., & Cuthill, I. C. (2012). Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs?. Lethaia 45(2):139-156.
- Hone, D. W. E., & Naish, D. (2013). The ‘species recognition hypothesis’ does not explain the presence and evolution of exaggerated structures in non‐avialan dinosaurs. Journal of Zoology 290(3):172-180.
- Lovelace, D. M., Hartman, S. A., & Wahl, W. R. (2007). Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny. Arquivos do Museu Nacional, Rio de Janeiro 65(4):527-544.
Sauropods were toblerones, not smarties tubes
September 9, 2015
As we’ve previously noted more than once here at SV-POW!, apatosaurine cervicals really are the craziest things. For one thing, they are the only dinosaur bones to have inspired the design of a Star Wars spaceship.
One result of this very distinctive cervical shape, with the ribs hanging down far below the centra, was that the necks of apatosaurines would have been triangular in cross-section, rather than tubular as often depicted. (The Apatosaurus maquette that Matt reviewed gets this right.)
Here’s how I conveyed this in two slides of my SVPCA talk:
Although apatosaurs take this to the extreme, the same was essentially true of all sauropod necks. The ventrolateral position of the cervical ribs would have lent the necks a rounded triangular shape, or diamond-shaped in the case of less extreme sauropods whose neck soft-tissue hung below the cervical ribs.
(Previously: Sauropods were tacos, not corn dogs; and Sauropods were corn-on-the-cob, not shish kebabs.)
Epipophyses, the forgotten apophyses: not just for sauropods!
February 2, 2015
Matt’s last post contained a nice overview of the occurrence of epipophyses in sauropodomorphs: that is, bony insertion points for epaxial ligaments and muscles above the postzygapophyseal facets. What we’ve not mentioned so far is that these structures are not limited to sauropods. Back when we were preparing one of the earlier drafts of the paper that eventually became Why sauropods had long necks; and why giraffes have short necks (Taylor and Wedel 2013a), I explored their occurrence in related groups. But that section never got written up for the manuscript, and now seems as good a time as any to fix that.
Theropods (including birds)
Most obviously, epipophyses occur in theropods, the sister group of sauropodomorphs.

Taylor and Wedel (2013a: figure 11). Archosaur cervical vertebrae in posterior view, Showing muscle attachment points in phylogenetic context. Blue arrows indicate epaxial muscles attaching to neural spines, red arrows indicate epaxial muscles attaching to epipophyses, and green arrows indicate hypaxial muscles attaching to cervical ribs. While hypaxial musculature anchors consistently on the cervical ribs, the principle epaxial muscle migrate from the neural spine in crocodilians to the epipophyses in non-avial theropods and modern birds, with either or both sets of muscles being significant in sauropods. 1, fifth cervical vertebra of Alligator mississippiensis, MCZ 81457, traced from 3D scans by Leon Claessens, courtesy of MCZ. Epipophyses are absent. 2, eighth cervical vertebra of Giraffatitan brancai paralectotype HMN SII, traced from Janensch (1950, figures 43 and 46). 3, eleventh cervical vertebra of Camarasaurus supremus, reconstruction within AMNH 5761/X, “cervical series I”, modified from Osborn and Mook (1921, plate LXVII). 4, fifth cervical vertebra of the abelisaurid theropod Majungasaurus crenatissimus,UA 8678, traced from O’Connor (2007, figures 8 and 20). 5, seventh cervical vertebra of a turkey, Meleagris gallopavo, traced from photographs by MPT.
In this figure from the 2013 paper, the rightmost images show cervical vertebrae of Majungasaurus (an abelisaurid theropod) and a turkey, both in posterior view. The red arrows indicate epaxial musculature pulling on the epipophyses. They are particularly prominent in Majungasaurus, rising almost a full centrum’s height above the postzygapophyseal facets.
The epipophyses are very prominent in the anterior cervicals of Tyrannosaurus, but much less so in its posterior cervicals — presumably because its flesh-tearing moves involved pulling upwards more strongly on the anterior part of the neck. Here’s a photo of the AMNH mount, from our post T. rex‘s neck is pathetic:
You can see something similar in the neck of Allosaurus, and the trend generally seems to be widespread among theropods.
Ornithischians
Note the very prominent epipophyses protruding above the postzygs in the anterior cervicals of this Heterodontosaurus in the AMNH public gallery:

Cast of AMNH 28471, Heterodontosaurus tucki, collected from the Early Jurassic Voisana, Herschel district, South Africa. Neck in left lateral view.
Here’s the hadrosaur Corythosaurus:

AMNH 5338, Corythosaurus casuarius, from the Campanian of the Red Deer River, Alberta, Canada. Collected by Barnum Brown and P. C. Kaisen, 1914. Cervicals 1-4 in right lateral view.
The prominent vertebra is C2: note that is has both a modest blade-like neural spine and prominent epipophyses — but that already by C3 the epipophyses are gone. Here is that C2 postzyg/epipophyses complex is close-up, clearly showing anteroposteriorly directed striations on the epipophysis, presumably representing the orientation of the attaching ligaments and muscles:
Here’s a close-up of the neck of the boring ornithopod Tenontosaurus, also in the AMNH gallery. (I’m not sure of the specimen number — if anyone can clarify, please leave a comment).
The interesting thing here is that it its axis (C2) seems to lack epipophyses (unlike C3), and to have a tall blade-like neural spine, as seen in mammals. We don’t really see C2 spines this big in other dinosaurs — compare with the much more modest spine in Corythosaurus, above. The texture of this part of the Tenontosaurus specimen looks suspicious, and I wonder whether that neural spine is a fabrication, created back in the day by AMNH staff who were so used to mammals that they “knew” what a C2 should look like? Anyway, the epipophysis above the postzyg of C3 is very distinct and definitely real bone.
Pterosaurs
Things get much more difficult with pterosaurs, because their cervicals are so fragile and easily crushed (like the rest of their skeleton, to be fair). While it’s easy to find nice, well-preserved ornithischian necks on display, you don’t ever really see anything similar for pterosaurs.
As a result, we have to rely on specimen photographs from collections, or more often on interpretive drawings. Even high-resolution photos, such as the one in Frey and Tischlinger (2012: fig 2) tend not to show the kind of detail we need. Usually, the only usable information comes from drawings made by people who have worked on the specimens.
Here, for example, is Rhamphorhynchus, well known as the most difficult pterosaur to spell, in figure 7 from Bonde and Christiansen’s (2003) paper on its axial pneumaticity:
It’s not the main point of the illustration, but you can make out clear epipophyses extending posteriorly past the postzygapophyseal facets in at least C3 and C5 — in C4, the relevant area is obscured by a rib. (Note that the vertebrae are upside down in this illustration, so you need to be looking towards the bottom of the picture.)
I’m pretty sure I’ve seen a better illustration of Rhamphorhynchus epipophyses, but as I get older my memory for Rhamphorhynchus epipophyses is no longer what it used to be and I can’t remember where. Can anyone help?
But also of interest is the azhdarchid pterosaur Phosphatodraco, here illustrated by Pereda Suberbiola et al. (2003):

Pereda Suberbiola et al. (2003: fig. 3). Phosphatodraco mauritanicus gen. et sp. nov, OCP DEK/GE 111, Late Cretaceous (Maastrichtian), Morocco: (a) cervical five in two fragments, ventral and left lateral views; (b) cervical six in ventrolateral view; (c) cervical seven in ventral view; (d) cervical eight in left lateral view; (e) cervical nine in posterior view; (f) cervical six in anterior view. c, centrum; co, condyle; ct, cotyle; hyp, hypapophysis; nc, neural canal; ns, neural spine; poe, postexapophysis; poz, postzygapophysis; prz, prezygapophysis; su, sulcus; tp, transverse process.
The cervicals of Phosphatodraco seem to have no epipophyses. So they were not ubiquitous in pterosaurs.
What does it all mean? This post has become a bit of a monster already so I’ll save the conclusion for another time. Stay tuned for more hot epipophyseal action!
References
- Bonde, Niels and Per Christiansen. 2003. The detailed anatomy of Rhamphorhynchus: axial pneumaticity and its implications. pp 217-232 in: E. Buffetaut and J-M Mazin (eds), Evolution and Palaeobiology of Pterosaurs. Geological Society, London, Special Publications 217. doi:10.1144/GSL.SP.2003.217.01.13
- Frey Eberhard and Helmut Tischlinger. 2012. The Late Jurassic Pterosaur Rhamphorhynchus, a Frequent Victim of the Ganoid Fish Aspidorhynchus? PLoS ONE 7(3):e31945. doi:10.1371/journal.pone.0031945
- Janensch, Werner. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica, Supplement 7 3:27-93.
- O’Connor Patrick M. 2007. The postcranial axial skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. pp 127-162 in: S. D. Sampson., D. W. Krause (eds), Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Society of Vertebrate Paleontology Memoir 8.
- Osborn, Henry F., and Charles C. Mook. 1921. Camarasaurus, Amphicoelias and other sauropods of Cope. Memoirs of the American Museum of Natural History, New Series 3:247-387.
- Pereda Suberbiola, Xabier, Nathalie Bardet, Stéphane Jouve, Mohamed Iarochène, Baadi Bouya and Mbarek Amaghzaz. 2003. A new azhdarchid pterosaur from the Late Cretaceous phosphates of Morocco. pp 79-90 in: E. Buffetaut and J-M Mazin (eds), Evolution and Palaeobiology of Pterosaurs. Geological Society, London, Special Publications 217. doi:10.1144/GSL.SP.2003.217.01.08
- Taylor, Michael P., and Mathew J. Wedel. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36 doi:10.7717/peerj.36
Sauropods’ neutral neck postures were really weird
November 5, 2014
Last night, I submitted a paper for publication — for the first time since April 2013. I’d almost forgotten what it felt like. But, because we’re living in the Shiny Digital Future, you don’t have to wait till it’s been through review and formal publication to read it. I submitted to PeerJ, and at the same time, made it available as a preprint (Taylor 2014).
It’s called “Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs”, and frankly the results are weird. Here’s a taste:

Taylor (2014:figure 3). Effect of adding cartilage to the neutral pose of the neck of Apatosaurus louisae CM 3018. Images of vertebra from Gilmore (1936:plate XXIV). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 1. If the slightly sub-horizontal osteological neutral pose of Stevens and Parrish (1999) is correct, then the cartilaginous neutral pose would be correspondingly slightly lower than depicted here, but still much closer to the elevated posture than to horizontal. (Note that the posture shown here would not have been the habitual posture in life: see discussion.)
A year back, as I was composing a blog-post about our neck-cartilage paper in PLOS ONE (Taylor and Wedel 2013c), I found myself writing down the rather trivial formula for the additional angle of extension at an intervertebral joint once the cartilage is taken into account. In that post, I finished with the promise “I guess that will have to go in a followup now”. Amazingly it’s taken me a year to get that one-pager written and submitted. (Although in the usual way of things, the manuscript ended up being 13 pages long.)
To summarise the main point of the paper: when you insert cartilage of thickness t between two vertebrae whose zygapophyses articulate at height h above the centra, the more anterior vertebra is forced upwards by t/h radians. Our best guess for how much cartilage is between the adjacent vertebrae in an Apatosaurus neck is about 10% of centrum length: the image above shows the effect of inserting that much cartilage at each joint.
And yes, it’s weird. But it’s where the data leads me, so I think it would be dishonest not to publish it.
I’ll be interested to see what the reviewers make of this. You are all of course welcome to leave comments on the preprint itself; but because this is going through conventional peer-review straight away (unlike our Barosaurus preprint), there’s no need to offer the kind of detailed and comprehensive comment that several people did with the previous one. Of course feel free if you wish, but I’m not depending on it.
References
Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.
Stevens, Kent A., and J. Michael Parrish. 1999. Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science 284(5415):798–800. doi:10.1126/science.284.5415.798
Necks Lie: the complete story
November 3, 2014
Just a quick post to link to all six (so far) installments of the “necks lie” series. I need this because I want to cite all the “necks lie” posts in a paper that I’ll shortly submit, and it seems better to cite a single page than four of them.
- Necks lie
- Necks lie, redux
- Sauropods still didn’t hold their necks in osteological neutral pose
- Hoatzins lie (and so do parrots)
- Herons:
- Necks lie: solitaire edition
- Shoebills
lietell the truth (and it’s disgusting)
I’ll update this post as and when we write more about lying necks.
Also:
What a world we live in.

X-ray of the neck of a seal, from Irish Seal Sanctuary. Note that the vertebral column becomes much more vertical than the fleshy envelope suggests.