A. Recovered skeletal elements of Haplocanthosaurus specimen MWC 8028. B. Caudal vertebra 3 in right lateral view. C. The same vertebra in posterior view. Lines show the location of sections for D and E. D. Midsagittal CT slice. The arrow indicates the ventral expansion of the neural canal into the centrum. E. Horizontal CT slice at the level of the neural arch pedicles, with anterior toward the top. Arrows indicate the lateral expansions of the neural canal into the pedicles. B-E are shown at the same scale. Wedel et al. (2021: fig. 1).

New paper out today:

Wedel, Mathew; Atterholt, Jessie; Dooley, Jr., Alton C.; Farooq, Saad; Macalino, Jeff; Nalley, Thierra K.; Wisser, Gary; and Yasmer, John. 2021. Expanded neural canals in the caudal vertebrae of a specimen of Haplocanthosaurus. Academia Letters, Article 911, 10pp. DOI: 10.20935/AL911 (link)

The paper is new, but the findings aren’t, particularly. They’re essentially identical to what we reported in our 1st Paleo Virtual Conference slide deck and preprint, and in the “Tiny Titan” exhibit at the Western Science Center, just finally out in a peer-reviewed journal, with better figures. The paper is open access and free to the world, and it’s short, about 1600 words, so this recap will be short, too.

A. Photograph of a 3D-printed model of the first three caudal vertebrae of Haplocanthosaurus specimen MWC 8028, including endocasts of the neural canal (yellow) and intervertebral joints (blue), in right lateral view, and with the neural canal horizontal. B. Diagram of the same vertebrae in midsagittal section, emphasizing the volumes of the neural canal (yellow) and intervertebral joint spaces (blue). Anterior is to the right. Wedel et al. (2021: fig. 2).

John Foster and I described Museum of Western Colorado (MWC) specimen 8028, a partial skeleton of Haplocanthosaurus from Snowmass, Colorado, in late 2014. One weird thing about that specimen (although not the only weird thing) is that the neural canals of the tail vertebrae are bizarrely expanded. In most vertebrae of most critters, the neural canal is a cylindrical tunnel, but in these vertebrae the neural canals are more like spherical vacuities.

John and I didn’t know what to make of that back in 2014. But a few years later I started working with Jessie Atterholt on bird anatomy, which led me to do a little project on the whole freaking zoo of weird stuff that birds and other dinosaurs do with their neural canals, which led to the 1PVC presentation, which led to this. 

Caudal vertebra 3 of Haplocanthosaurus specimen MWC 8028 in left posterolateral (A), posterior (B), and right posterolateral (C) views, with close-ups (D and E). In A and B, a paintbrush is inserted into one of the lateral recesses, showing that the neural canal is wider internally than at either end. Wedel et al. (2021: fig. 3).

Of course there will be more posts and more yapping, as signaled by the ‘Part 1’ in the post title. Although I am extremely satisfied with the streamlined, 1600-word missile of information and reasoning that just dropped, there are parts that I want to unpack, that haven’t been unpacked before. But the paper launched at midnight-thirty, Pacific Daylight Time, I’m up way too late finishing this first post, and I reckon the rest will keep for a few hours at least.

Anatomical features of the neural canal in birds and other dinosaurs. A. MWC 9698, a mid caudal vertebra of Apatosaurus in posterodorsal view. Arrows highlight probable vascular foramina in the ventral floor of the neural canal. B. LACM 97479, a dorsal vertebra of Rhea americana in left anterolateral view. Arrows highlight pneumatic foramina inside the neural canal. C. A hemisected partial synsacrum of a chicken, Gallus domesticus, obtained from a grocery store. Anterior is to the right. The bracket shows the extent of the dorsal recess for the glycogen body, which only spans four vertebrae. Arrows highlight the transverse grooves in the roof of the neural canal for the lumbosacral organ. D. Sagittal (left) and transverse (right) CT slices through the sacrum of a juvenile ostrich, Struthio camelus. The bracket shows the extent of the lumbosacral expansion of the spinal cord. Indentations in the roof of the neural canal house the lumbosacral organ. In contrast to the chicken, the ostrich has a small glycogen body that does not leave a distinct osteological trace. Yellow arrows show the longitudinal troughs in the ventral floor of the neural canal that house the ventral eminences of the spinal cord. Wedel et al. (2021: fig. 4).

I have a ton of people to thank. John Foster, obviously, for initiating the line of research that led here. Julia McHugh for access to the MWC collections, and for being an excellent sounding board regarding the Morrison Formation, sauropod dinosaurs, and crafting ambitious but tractable research projects. Anne Weil for helping me be methodical in thinking through the logic of the paper, and Mike Taylor for helping me get it polished. Niels Bonde, Steven Jasinski, and David Martill for constructive reviews, which were published alongside the paper. We couldn’t take all of their suggestions because of space limitations, but figures 3 and 4 were born because they asked for them, and that’s not a small thing. Vicki and London Wedel for putting up with me at various points in this project, especially in the last few days as I’ve been going bonkers correcting page proofs. And finally, because I’m the one writing this blog post, my coauthors: Jessie Atterholt, Alton Dooley, Saad Farooq, Jeff Macalino, Thierra Nalley, Gary Wisser, and John Yasmer, for their contributions and for their patience during the unusually long gestation of this very short paper.

More to say about all that in the future. For now, yay, new paper. Have fun with it. Here’s the link again.



FIGURE 7.1. Pneumatic features in dorsal vertebrae of Barapasaurus (A–D), Camarasaurus (E–G), Diplodocus (H–J), and Saltasaurus (K–N). Anterior is to the left; different elements are not to scale. A, A posterior dorsal vertebra of Barapasaurus. The opening of the neural cavity is under the transverse process. B, A midsagittal section through a middorsal vertebra of Barapasaurus showing the neural cavity above the neural canal. C, A transverse section through the posterior dorsal shown in A (position 1). In this vertebra, the neural cavities on either side are separated by a narrow median septum and do not communicate with the neural canal. The centrum bears large, shallow fossae. D, A transverse section through the middorsal shown in B. The neural cavity opens to either side beneath the transverse processes. No bony structures separate the neural cavity from the neural canal. The fossae on the centrum are smaller and deeper than in the previous example. (A–D redrawn from Jain et al. 1979:pl. 101, 102.) E, An anterior dorsal vertebra of Camarasaurus. F, A transverse section through the centrum (E, position 1) showing the large camerae that occupy most of the volume of the centrum. G, a horizontal section (E, position 2). (E–G redrawn from Ostrom and McIntosh 1966:pl. 24.) H, A posterior dorsal vertebra of Diplodocus. (Modified from Gilmore 1932:fig. 2.) I, Transverse sections through the neural spines of other Diplodocus dorsals (similar to H, position 1). The neural spine has no body or central corpus of bone for most of its length. Instead it is composed of intersecting bony laminae. This form of construction is typical for the presacral neural spines of most sauropods outside the clade Somphospondyli. (Modified from Osborn 1899:fig. 4.) J, A horizontal section through a generalized Diplodocus dorsal (similar to H, position 2). This diagram is based on several broken elements and is not intended to represent a specific specimen. The large camerae in the midcentrum connect to several smaller chambers at either end. K, A transverse section through the top of the neural spine of an anterior dorsal vertebra of Saltasaurus (L, position 1). Compare the internal pneumatic chambers in the neural spine of Saltasaurus with the external fossae in the neural spine of Diplodocus shown in J. L, An anterior dorsal vertebra of Saltasaurus. M, A transverse section through the centrum (L, position 2). N, A horizontal section (L, position 3). In most members of the clade Somphospondyli the neural spines and centra are filled with small camellae. (K–N modified from Powell 1992:fig. 16.) [Figure from Wedel 2005.]

Here’s figure 1 from my 2005 book chapter. I tried to cram as much pneumatic sauropod vertebra morphology into one figure as I could. All of the diagrams are traced from pre-existing published images except the horizontal section of the Diplodocus dorsal in J, which is a sort of generalized cross-section that I based on broken centra of camerate vertebrae from several taxa (like the ones shown in this post). One thing that strikes me about this figure, and about most of the CT and other cross-sections that I’ve published or used over the years (example), is that they’re more or less bilaterally symmetrical. 

We’ve talked about asymmetrical vertebrae before, actually going back to the very first post in Xenoposeidon week, when this blog was only a month and a half old. But not as much as I thought. Given how much space asymmetry takes up in my brain, it’s actually weird how little we’ve discussed it.

The fourth sacral centrum of Haplocanthosaurus CM 879, in left and right lateral view (on the left and right, respectively). Note the distinct fossa under the sacral rib attachment on the right, which is absent on the left.

Also, virtually all of our previous coverage of asymmetry has focused on external pneumatic features, like the asymmetric fossae in this sacral of Haplocanthosaurus (featured here), in the tails of Giraffatitan and Apatosaurus (from Wedel and Taylor 2013b), and in the ever-popular holotype of Xenoposeidon. This is true not just on the blog but also in our most recent paper (Taylor and Wedel 2021), which grew out of this post.

Given that cross-sectional asymmetry has barely gotten a look in before now, here are three specimens that show it, presented in ascending levels of weirdness.

First up, a dorsal centrum of Haplocanthosaurus, CM 572. This tracing appeared in Text-fig 8 in my solo prosauropod paper (Wedel 2007), and the CT scout it was traced from is in Fig 6 in my saurischian air-sac paper (Wedel 2009). The section shown here is about 13cm tall dorsoventrally. The pneumatic fossa on the left is comparatively small, shallow, and lacks very distinct overhanging lips of bone. The fossa on the right is about twice as big, it has a more distinct bar of bone forming a ventral lip, and it is separated from the neural canal by a much thinner plate of bone. The fossa on the left is more similar to the condition in dorsal vertebrae of Barapasaurus or juvenile Apatosaurus, where as the one on the right shows a somewhat more extensive and derived degree of pneumatization. The median septum isn’t quite on the midline of the centrum, but it’s pretty stout, which seems to be a consistent feature in presacral vertebrae of Haplocanthosaurus.


Getting weirder. Here’s a section through the mid-centrum of C6 of CM 555, which is probably Brontosaurus parvus. That specific vert has gotten a lot of SV-POW! love over the years: it appears in several posts (like this one, this one, and this one), and in Fig 19 in our neural spine bifurcation paper (Wedel and Taylor 2013a). The section shown here is about 10cm tall, dorsoventrally. In cross-section, it has the classic I-beam configuration for camerate sauropod vertebrae, only the median septum is doing something odd — rather than attaching the midline of the bony floor of the centrum, it’s angled over to the side, to attach to what would normally be the ventral lip of the camera. I suspect that it got this way because the diverticulum on the right either got to the vertebra a little ahead of the one on the left, or just pneumatized the bone faster, because the median septum isn’t just bent, even the vertical bit is displaced to the left of the midline. I also suspect that this condition was able to be maintained because the median septa weren’t that mechanically important in a lot of these vertebrae. We use “I-beam” as a convenient shorthand to describe the shape, but in a metal I-beam the upright is as thick or thicker than the cross bits. In contrast, camerate centra of sauropod vertebrae could be more accurately described as a cylinders or boxes of bone with some holes in the sides. I think the extremely thin median septum is just a sort of developmental leftover from the process of pneumatization.

EDIT 3 days later: John Whitlock reminded me in the comments of Zurriaguz and Alvarez (2014), who looked at asymmetry in the lateral pneumatic foramina in cervical and dorsal vertebrae of titanosaurs, and found that consistent asymmetry along the cervical column was not unusual. They also explicitly hypothesized that the asymmetry was caused by diverticula on one side reaching the vertebrae earlier than diverticula on other other side. I believe they were the first to advance that idea in print (although I should probably take my own advice and scour the historical literature for any earlier instances), and needless to say, I think they’re absolutely correct.

Both of the previous images were traced from CTs, but the next one is traced from a photo of a specimen, OMNH 1882, that was broken transversely through the posterior centrum. To be honest, I’m not entirely certain what critter this vertebra is from. It is too long and the internal structure is too complex for it to be Camarasaurus. I think an apatosaurine identity is unlikely, too, given the proportional length of the surviving chunk of centrum, and the internal structure, which looks very different from CM 555 or any other apatosaur I’ve peered inside. Diplodocus and Brachiosaurus are also known from the Morrison quarries at Black Mesa, in the Oklahoma panhandle, which is where this specimen is from. Of those two, the swoopy ventral margin of the posterior centrum looks more Diplodocus-y than Brachiosaurus-y to me, and the specimen lacks the thick slab of bone that forms the ventral centrum in presacrals of Brachiosaurus and Giraffatitan (see Schwarz and Fritsch 2006: fig. 4, and this post). So on balance I think probably Diplodocus, but I could easily be wrong.

Incidentally, the photo is from 2003, before I knew much about how to properly photograph specimens. I really need to have another look at this specimen, for a lot of reasons.

Whatever taxon the vertebra is from, the internal structure is a wild scene. The median septum is off midline and bent, this time at the top rather than the bottom, the thick ventral rim of the lateral pneumatic foramen is hollow on the right but not on the left, and there are wacky chambers around the neural canal and one in the ventral floor of the centrum. 

I should point out that no-one has ever CT-scanned this specimen, and single slices can be misleading. Maybe the ventral rim of the lateral foramen is hollow just a little anterior or posterior to this slice. Possibly the median septum is more normally configured elsewhere in the centrum. But at least at the break point, this thing is crazy. 

What’s it all mean? Maybe the asymmetry isn’t noise, maybe it’s signal. We know that when bone and pneumatic epithelium get to play together, they tend to make weird stuff. Sometimes that weirdness gets constrained by functional demands, other times not so much. I think it’s very seductive to imagine sauropod vertebrae as these mechanically-optimized, perfect structures, but we have other evidence that that’s not always true (for example). Maybe as long as the articular surfaces, zygapophyses, epipophyses, neural spine tips, and cervical ribs — the mechanically-important bits — ended up in the right places, and the major laminae did a ‘good enough’ job of transmitting forces, the rest of each vertebra could just sorta do whatever. Maybe most of them end up looking more or less the same because of shared development, not because it was so very important that all the holes and flanges were in precisely the same places. That might explain why we occasionally get some really odd verts, like C11 of the Diplodocus carnegii holotype.

That’s all pretty hand-wavy and I haven’t yet thought of a way to test it, but someone probably will sooner or later. In the meantime, I think it’s valuable to just keep documenting the weirdness as we find it.


Accidental anaglyphs

October 16, 2020

Everyone knows that the very first thing you should do to improve your specimen photography is to use a tripod: it eliminates hand-shake and gives you much crisper photos. In most respects, my photographs have got much, much better since I’ve been habitually using a tripod.

But it has meant I’ve not been able to benefit from happy accidents like the one that gave me this 3D anaglyph of the Archbishop‘s Cervical S in dorsal view:

(Do you have red-cyan glasses? Yes? Good! You will be able to appreciate all the delicious morphological information in this photo. No? Go and order some right now — they cost literally a dollar.)

The reason I was able to make this very useful image is because back in the old pre-tripod days I would sometimes accidentally move a little bit between taking two more-or-less identical photographs. Here are the two images that I was able to composite into the anaglyph above:

Each of them is pretty uninformative alone: who can tell one nondescript area of brown bone from another? But when combined, they are extraordinarily more informative. If you don’t have 3D glasses then (A) get some! and (B) you can get some idea of how helpful the 3D information is from the crude wigglegram below, which simply switches back and forth between the two images.

And I can’t overstate how enormously helpful I have found these accidentally sourced anaglyphs as I write the descriptive part of the Archbishop manuscript. Even at this level of crudity, they have shown me several important points of morphology that I would certainly have missed if I’d been working only from my orthogonal-view photos, and saved me from more than one misinterpretation.

The moral is twofold:

  1. When taking specimen photographs, use a tripod — but deliberately get some pairs of shots where the camera is moved to the side by about 7 cm (the distance between the pupils in an average human).
  2. If you don’t have any red-cyan glasses, get some!

I can’t even count how many sauropod vertebra pictures we’ve posted here across the last ten years, but I am confident that the total comes to at least a lot. Here’s a picture from each year of the blog’s existence so far — let’s vote on which is the best!

November 15, 2007: Xenoposeidon week, day 1: Introducing Xeno

The stark beauty of the Xenoposeidon proneneukos holotype NHMUK R2095, a mid-to-posterior partial dorsal vertebra in left and right lateral views.

February 1, 2008: Your neck is pathetic

Sauroposeidon proteles holotype OMNH 53062, 8th cervical vertebra in left lateral view (1400 mm total length). Entire human neck for scale.

January 7, 2009: The sauropods of Star Wars: Special Edition

Our old friend Giraffatitan brancai MB.R.2181 once more, this time with Matt for scale.

February 12, 2010: Tutorial 8: how to photograph big bones

The Archbishop in all its glory. The much-loved dorsals 8 and 9, in right lateral view, of the Tendaguru brachiosaurid NHMUK R5937.

May 16, 2011: Why the long necks? Probably not sexual selection

Taylor et al. (2011), fig. 1: Sauropod necks, showing relationships for a selection of species, and the range of necks lengths and morphologies that they encompass. Phylogeny based on that of Upchurch et al. (2004: fig. 13.18). Mamenchisaurus hochuanensis (neck 9.5 m long) modified from Young & Zhao (1972: fig. 4); Dicraeosaurus hansemanni (2.7 m) modified from Janensch (1936: plate XVI); Diplodocus carnegii (6.5 m) modified from Hatcher (1903: plate VI); Apatosaurus louisae (6 m) modified from Lovelace, Hartman & Wahl (2008: fig. 7); Camarasaurus supremus (5.25 m) modified from Osborn & Mook (1921: plate 84); Giraffatitan brancai (8.75 m) modified from Janensch (1950: plate VIII); giraffe (1.8 m) modified from Lydekker (1894:332). Alternating grey and white vertical bars mark 1 m increments.

April 15, 2012: Neural spine bifurcation in sauropods, Part 6: more reasons why Haplocanthosaurus is not a juvenile of a known diplodocid

Wedel 2009: Fig. 6. Pneumatization of the presacral vertebrae in Haplocanthosaurus. (A) X-ray image of a posterior cervical vertebra of CM 879 in right lateral view. (B) A CT slice through the same vertebra. (C) X-ray image of an anterior dorsal vertebra of CM 572 in left lateral view. (D) X-ray image of the same vertebra in anterior view.

January 16, 2013: Plateosaurus is pathetic

Our old friend C8 of the Giraffatitan brancai paralectotype MB.R.2181 in left dorsolateral view, with a comparable cervical of the prosauropod Plateosaurus for scale.

February 12, 2014: Can PeerJ really be only a year old?

Barosaurus lentus holotype YPM 429, Vertebra Q (C?13). Top row: left ventrolateral view. Middle row, from left to right: anterior view, with ventral to the right; ventral view; posterior view, with ventral to the left. Bottom row: right lateral view, inverted. Inset shows diapophyseal facet on right side of vertebra, indicating that the cervical ribs were unfused in this individual despite its great size. Note the broad, flat prezygapophyseal facet visible in anterior view. (Taylor and Wedel 2013b: figure 6)

September 14, 2015: So what were apatosaurs doing with their crazy necks?

A slide from our 295 SVPCA talk, illustrating key points in apatosaurine neck morphology that led us to the BRONTOSMASH hypothesis.

May 18, 2016: Thank you to all our Sauropocalypse hosts!

Mike compares Jensen’s sculpture of the big Supersaurus cervical BYU 9024 with the actual fossil.

August 15, 2017: “Biconcavoposeidon”

AMNH FARB 291, five consecutive posterior dorsal vertebrae of a probably brachiosaurid sauropod which we informally designate “Biconcavoposeidon”, in right lateral view.

(Yes, there are eleven pictures: we’ve been running for ten years, but that includes both the end of 2007 and the start of 2017.)

So, which is the picture of the decade? Vote here (and let us know in the comments if we missed your favourite).


As I was clearing out some clutter, I came across this hand-written list of projects that I wanted to get completed:


Sadly, I didn’t put a date on the list. But I can estimate it as before 2013 (because of the reference of Why giraffes have short necks as a project still to be completed) but after 2011 (because the no necks for sex project is not listed.) So it’s probably from 2012, which means four years have passed since I wrote that list.

What have I achieved in that time? Not nearly enough.

  • ICZN checklist refers to the short set of name-a-new-animal instructions that I was crowdsourcing here on SV-POW!. We started this on 10 February 2011, had it nearly done less than two weeks later, then … stalled for no reason at all. Eighteen months later, the ICZN changed to allow electronic publication, instantly rendering the in-progress document obsolete. Now I don’t know whether to kill the project or update it. Should have just published it in 2011.
  • WTH (Why giraffes have short necks) was published in PeerJ, hurrah!
  • PBJ stands for “Pneumatic Butt on a JANGO“. It was published in the PLOS ONE’s sauropod gigantism collection, hurrah!
  • Archbishop is of course the Natural History Museum’s Tendaguru brachiosaur, which I have been planning to describe since 2004. Still not done. Shameful.
  • Apatosaurus” minimus is a descriptive project. Real work has been done, and I gave a talk about it at SVPCA in 2012. Not much progress since then. Lame.
  • Astrolembospondylus refers to the starship-shaped cervical vertebra of the Barosaurus holotype YPM 429. That project has seen daylight as both an SVPCA talk in 2013 and a PeerJ Preprint — which is great. But once the reviews were in, we should have turned it around and got it submitted as a proper paper. For some reason, we didn’t, and this project, too, is in limbo. Weak.
  • ODP is the Open Dinosaur Project. Do not get me started on that train-wreck.
  • Neck cartilage: giraffe, ostrich, croc. This refers to a comparative dissection project to determine whether sauropods had intervertebral discs. I proposed it as a Masters project twice, but no-one bit; then I offered to up to anyone who wanted it on SV-POW!, with the same (lack of) result. Looks like it’s not sexy enough for anyone to invest the time into, which is a shame because it’s important.
  • Limb cartilage limiting mass refers to the second talk I ever gave, at Progressive Palaeontology in 2004. It’s ridiculous that I never wrote this up. Ridiculous.
  • Haemodynamics refers to Matt’s and my looong-running plans to write up our thoughts about Roger Seymour’s work that suggests blood-circulation issues prevented sauropods from having habitually erect necks. I’m going to blame Matt for this one’s lack of progress. (Not because he’s any more to blame than I am — just because I’ve been taking all the blame so far, and I want to share it around a bit.)
  • Immature sauropods, pop. dynamics. Parts of this made it out in the recent Hone, Farke, and Wedel (2016) paper on dinosaur ontogenetic stages. Not as much as I’d have liked to see, but enough to make a dedicated paper about this not really feasible.
  • Ostrich skull atlas. I made lovely multi-view photos of nearly every bone in my ostrich skull. My plan was, and sort of still is, to publish them all in a text-light paper. No progress on this. I still have a few bones left to photograph, and may need to completely disarticulate the mandible before I can do that.
  • Wealden sauropod vert. analysis. I’d planned, going back to the earliest posts on this blog, to properly redescribe and analyse the many fascinating isolated sauropod vertebrae of the Wealden Formation. This is another one that I gave a ProgPal talk about before getting distracted. Not sure if this will ever happen: I’m still very interested in it, but even more interested in other things.
  • Fossils explained is a series of articles for geologists, explaining various fossil groups in laymen’s terms (here is an example). Darren’s done half a dozen of them. Once many years ago I expressed an interest in doing one on sauropods, and the editor liked the idea. Then … nothing. My bad.
  • Ventral compression bracing is a section that, heaven help us, we somehow decided we should remove from Why Giraffes Have Short Necks and make into its own paper. It got stalled on some croc-dissection work that Matt was doing with his student Vanessa and is now in limbo.

That’s fifteen projects that I had on the go, or planned to work on, four years ago. I make it that two of them (WTH and PBJ) have been published and one (Barosaurus) has made it as far as a the preprint stage. Three more are probably dead for various reasons, and that leaves nine where I’ve made woefully inadequate progress — in most cases, none at all.

Meanwhile, needless to say, I’ve added a bunch more projects to my To Do list since I scribbled this one out. (And to be fair to me, I’ve got a few other projects out in this time that weren’t mentioned in the note: neural spine bifurcation as Matt’s co-author, lead author on intervertebral cartilage and sole on its addendum; I slipped in as last author on Haestasaurus; and I wrote the SPARC briefing paper on evaluating researchers.)

What does all this mean?

I don’t know. Some of those no-progress yet projects are still very much alive in my mind — notably the Archbishop, of course. Others might never happen. Some are 90% done and I should just push them out the door.

One moral of this story is that I shouldn’t have burned 250 hours since Christmas playing Skyrim. But maybe a more constructive one is that it’s just really hard to know what projects are going to take wings and fly and which aren’t. My guess — and I’d love to hear some confirmation or denial in the comments — is that most researchers have a similar palette of half-done projects floating around their hindbrains, continually projecting low-level guilt rays. I guess I long ago gave up on the idea that I would ever finish all my projects, because the only way that would happen would be if I never started any more new ones — and that ain’t gonna happen.

Oh, here’s a better moral: ideas to work on are cheap. In fact Matt and I have so darned many that we sometimes just give them away here on SV-POW!. (I am pretty certain that there are lots more similar project-giveaway posts somewhere here, but we didn’t tag them at the time.)

Ideas are cheap; actual work is hard.

A couple of weeks ago, Mike sent me a link to this interview with ecologist James O’Hanlon, who made this poster (borrowed from this post on O’Hanlon’s blog):

O'Hanlon et al isbeposter

We had a short email exchange which quickly converged on, “This would work well for some projects, but not for others.” That’s the same conclusion I came to in my recent review of my own paper titles: I am increasingly enamored of titles that are full sentences, because then if all someone reads is your title, they still know what you found. But not every paper can be summarized so neatly.

Beginning a tight little internet eddy that will be complete at the end of this post, Andy Farke posted my paper title review post on Facebook and it fired some discussion in the comments. Victoria Arbour wrote, “I’m trying to move more towards ‘sentence’ titles, but it’s difficult to come up with something that’s concise, accurate and nuanced sometimes!” I responded, “Totally agreed. There’s no one size fits all solution. I have no idea how John Foster and I could have turned the Snowmass Haplocanthosaurus title into a sentence that wouldn’t have been a disaster. ‘Concise, accurate, and nuanced’ are all good goals, but they pull in different directions.”

But it got me thinking about the different ways that we can craft our results for effective delivery. The default package is long-form: the paper. Not just long, but narrowly targeted: just about every sub-sub-subfield has a core of diehards who will read your paper because it’s right in their wheelhouse and they basically have to, to stay caught up. You were going to reach them anyway. The real question – the question that, iterated over all of your papers, will decide the shape of your career – is who else are you going to reach? The answer is going to depend a lot on serendipity, but you can improve your chances by building something easily digestible – scattering the seeds of your results over as many brains as possible, to increase the number of successful germinations (which in this metaphor could be anything from citations to one-off collaborations to life-long friendships). Here’s what I have so far.

Four ways to efficiently package your results

I almost wrote, “four ways to weaponize and aerosolize your science”. You’re trying to infect people with your ideas. Here are some potential delivery mechanisms.

First, and already mentioned: a good title. Not “Aspects of the history, anatomy, taxonomy and palaeobiology of good heavens I have lost feeling in my extremities” but, whenever possible, something that either tells people what you found (the sentence title) or at least indicates that you found something interesting (the question title, some ‘hook’ titles – “Why giraffes have short necks”). See these three posts for more.

Wedel and Taylor 2013 bifurcation Figure 9 - bifurcatogram

Congratulations, now you’ve read Wedel and Taylor 2013a (to a first approximation). What are you going to do with all the time we just saved you?

Second, a summary figure. Discussed here. Nice because once people have seen that figure, they basically have your results in one convenient, portable, easily-digestible package. Downside: figures are usually entombed in papers, so this doesn’t count as an outreach maneuver unless you let the figure out into the wild some other way. Blog it, put it on Facebook, do something with it so that it functions as a funnel, catching people and pointing them toward your work.

Third, a punchy poster, like O’Hanlon’s. This has a similar caveat as the summary figure: if the only place people can see it is in its native environment (the paper, the scientific meeting), it’s still only preaching to the converted. Get it out where other people can see it. Second caveat: if the poster doesn’t point to something outside of itself, it doesn’t really count as outreach material. The best part of O’Hanlon’s poster is the QR code. If anyone is unhappy with how brief the poster is, they can follow the link and go down the rabbit hole. The depth of the engagement is in the user’s hands. Corollary: if your poster doesn’t have a QR code or a (tiny)URL, it’s a dead end. Why not make it into a gateway? It’s not a question of either/or, it’s an opportunity for yes/and.

ankylosaur heads by Victoria Arbour

Fourth, an infographic, like this one Victoria Arbour made to summarize some of the results from her big 2013 paper on Alberta ankylosaurs (borrowed from here). I thought it was ingenious when I first saw it (on Facebook), and I still do. You know why? Because I know jack about ankylosaurs, but this thing makes them seem both cool and tractable. Victoria is conveying, “There is structure here, and it makes sense. Let me guide you through it.” I instantly wanted something like this for every group of dinosaurs. You know who will appreciate you building something like this? Every other person besides the half-dozen grognards who work on the exact same thing you do (and maybe them, too). Gratitude leads to citations – people will go out of their way to cite your work just because they want other people to know about it.

Conclusions: give people a destination, give them choices, give them something

Three final points about all of this. First, none of these things work if there’s nowhere for interested parties to go, or nothing for them to find when they get there. If there’s a paper already, it had better justify the interest that made people look at it. Don’t let your catchy title be like the trailer for that movie that was 2 minutes of awesome and 1:58 of zzzzzzz. If there’s no paper yet, what are you pointing people to – a blog, a research website, a PeerJ preprint, some files on FigShare, a YouTube video, your open notebook, what? Give them somewhere to go. Immediate implication: if there’s nowhere else for interested people to go, why are you presenting now? Again: don’t build dead-ends, build gateways.

Next, if you think that crafting a second, tighter package strictly for the purposes of promotion is a bit gauche, here’s another perspective: you’re giving people more choices about how to engage with your work. A paper alone presents a very limited set of options. Read me (or skim me, or look at my figures), or don’t. Some people don’t have the activation energy that requires, and by ‘some people’ I mean everyone outside of your little niche. Most of them will never know that your work even exists. Craft something that will reach those people and give them an easy way in. Even for those closer to home, it may still make their lives easier. Have I actually read Arbour and Currie (2013)? No, but I looked at the pretty figures, because I saw the infographic on Facebook. So when I do need to know something about ankylosaurs (hey, stranger things have happened), I know where to turn – and who to cite. I, the user, have options. Give your users more options, and you may find that you get more users.

Third, it pays to stop and think about how people who aren’t in your narrow sub-sub-subfield are going to find out about your work. Do you have a blog? A Facebook account? Active on a mailing list or a forum? As long as that figure or poster or infographic sits in its native habitat, it’s only reaching the converted. Put it on your blog or on Facebook, now it’s something else, carrying your ideas out into the world: a missive, a missile, a missionary – all from the Latin mittere, ‘to send’. You’re already doing the work. Package it, neatly and tightly, and send it.

– – – – – – –

Many thanks to Victoria Arbour for permission to post her diagram, and for her patience over the 23 months that it has taken me to get around to doing so. You really should go check out Arbour and Currie (2013) – the figures are stunning – and Victoria’s extensive and entertaining series of blog posts that followed. That rabbit hole starts here.



There’s a new mamenchisaurid in town! It’s called Qijianglong (“dragon of Qijiang”), and it’s the work of Xing et al. (2015).

Life restoration of Qijianglong, apparently by lead author Xing Lidar.

Life restoration of Qijianglong, by Cheung Chungtat.

As far as I can make out, the life restoration is also due to Xing Lida: at least, every instance of the picture I’ve seen says “Credit: Xing Lida”. If that’s right, it’s an amazing display of dual expertise to produce both the science and the art! We could quibble with details, but it’s a hundred times better than I could ever do. [Update: no, it’s by Cheung Chungtat, but being uniformly mis-attributed in the media. Thanks to Kevin for the correction in the comment below.]

There’s a mounted skeleton of this new beast in the museum local to where it was found, though I don’t know how much of the material is real, or cast from the real material. Here it is:

A reconstructed skeleton of Qijianglong now on display in Qijiang Museum

A reconstructed skeleton of Qijianglong now on display in Qijiang Museum

A new sauropod is always great news, of course, and it’s a source of shame to us that we cover so few of them here on SV-POW!. (Just think of some of the ones we’ve missed recently … Leikupal, for example.)

But as is so often the case, the most interesting thing about this new member of the club is its vertebrae — specifically the cervicals. Here they are:

FIGURE 11. Anterior cervical series of Qijianglong guokr (QJGPM 1001) in left lateral views unless otherwise noted. A, axis; B, cervical vertebra 3; C, cervical vertebra 4; D, cervical vertebrae 5 and 6; E, cervical vertebra 7 and anterior half of cervical vertebra 8 (horizontally inverted; showing right side); F, posterior half of cervical vertebra 8 and cervical vertebra 9; G, cervical vertebra 10; H, cervical vertebra 11; I, close-up of the prezygapophy- sis-postzygapophysis contact between cervical vertebrae 3 and 4 in dorsolateral view, showing finger-like process lateral to postzygapophysis; J, close- up of the postzygapophysis of cervical vertebra 5 in dorsal view, showing finger-like process lateral to postzygapophysis. Arrow with number indicates a character diagnostic to this taxon (number refers to the list of characters in the Diagnosis). All scale bars equal 5 cm. Abbreviations: acdl, anterior centrodiapophyseal lamina; cdf, centrodiapophyseal fossa; plc, pleurocoel; pocdl, postcentrodiapophyseal lamina; poz, postzygapophysis; pozcdf, post- zygapophyseal centrodiapophyseal fossa; pozdl, postzygodiapophyseal lamina; ppoz, finger-like process lateral to postzygapophysis; ppozc, groove for contact with finger-like process; przdl, prezygodiapophyseal lamina; sdf, spinodiapophyseal fossa.

Xing et al. (2015), FIGURE 11. Anterior cervical series of Qijianglong guokr (QJGPM 1001) in left lateral views unless otherwise noted. A, axis; B, cervical vertebra 3; C, cervical vertebra 4; D, cervical vertebrae 5 and 6; E, cervical vertebra 7 and anterior half of cervical vertebra 8 (horizontally inverted; showing right side); F, posterior half of cervical vertebra 8 and cervical vertebra 9; G, cervical vertebra 10; H, cervical vertebra 11; I, close-up of the prezygapophy- sis-postzygapophysis contact between cervical vertebrae 3 and 4 in dorsolateral view, showing finger-like process lateral to postzygapophysis; J, close- up of the postzygapophysis of cervical vertebra 5 in dorsal view, showing finger-like process lateral to postzygapophysis. Arrow with number indicates a character diagnostic to this taxon (number refers to the list of characters in the Diagnosis). All scale bars equal 5 cm. Abbreviations: acdl, anterior centrodiapophyseal lamina; cdf, centrodiapophyseal fossa; plc, pleurocoel; pocdl, postcentrodiapophyseal lamina; poz, postzygapophysis; pozcdf, post- zygapophyseal centrodiapophyseal fossa; pozdl, postzygodiapophyseal lamina; ppoz, finger-like process lateral to postzygapophysis; ppozc, groove for contact with finger-like process; przdl, prezygodiapophyseal lamina; sdf, spinodiapophyseal fossa.

(At first, I couldn’t figure out what this pocdl abbreviation meant. Then I realised it was a vanilla posterior centrodiapophyseal lamina. Come on, folks. That element has had a standard abbreviation since 1999. Let’s use our standards!)

The hot news in these cervicals is the presence of what the authors call “a distinct finger-like process extending from the postzygapophyseal process beside a zygapophyseal contact”. They don’t give a name to these things, but I’m going to call them parapostzygapophyses since they’re next to the postzygapophyses. [Update: see the comment from Matt below.]

You can get some sense of this morphology from the figure above — although it doesn’t help that we’re looking at tiny greyscale images which really don’t convey 3d structure at all. The best illustration is part J of the figure:


What are these things? The paper itself says disappointingly little about them. I quote from page 9:

From the axis to at least the 14th cervical vertebra, a finger- like process extends posteriorly above the postzygapophysis and overlaps onto the dorsolateral surface of the prezygapophysis of the next vertebra (Fig. 11I, J). These processes are unique to Qijianglong, unlike all previously known mamenchisaurids that are preserved with cervical vertebrae (e.g., Chuanjiesaurus, Mamenchisaurus spp., Omeisaurus spp., Tonganosaurus). Therefore, the neck of Qijianglong presumably had a range of motion restricted in sideways.

That’s it.

So what are these things? The authors — who after all have seen the actual fossils, not just the rather inadequate pictures — seem to assume that they are a stiffening adaptation, but don’t discuss their reasoning. My guess — and it’s only a guess — it that they assumed that this is what was going on with these processes because it’s what people have assumed about extra processes on xenarthrous vertebrae. But as best as I can determine, that’s not been demonstrated either, only assumed. Funny how these things seem to get a pass.

Armadillo lumbar vertebrae in posterior, anterior and right lateral views.

Armadillo lumbar vertebrae in posterior, anterior and right lateral views.

So what are these processes? It’s hard to say for sure without having seen the fossils, or at least some better multi-view photos, but the obvious guess is that they are our old friends epipophyses, in extreme form. That is, they are probably enlarged attachment points for posteriorly directed dorsal muscles, just as the cervical ribs are attachment points for posteriorly directly ventral muscles.

It’s a shame that Xing et al. didn’t discuss this (and not only because it would probably have meant citing our paper!) Their new beast seems to have some genuinely new and interesting morphology which is worthy of a bit more attention than they gave it, and whose mechanical implications could have been discussed in more detail. Until more is written about these fossils (or better photographs published) I think I am going to have to suspend judgement on the as-yet unjustified assumption that the parapostzygs were there to make the neck rigid against transverse bending.

A final thought: doesn’t JVP seem terribly old-fashioned now? It’s not just the paywall — apologies to those many of you who won’t be able to read the paper. The greyscaling of the figures is part of it — something that makes no sense at all in 2015. The small size and number of the illustrations is also a consequence of the limited page-count of a printed journal — it compares poorly with, for example, the glorious high-resolution colour multiview illustrations in Farke et al.’s (2013) hadrosaur description in PeerJ. Seems to me that, these days, all the action is over at the OA journals with infinite space — at least when it comes to descriptive papers.


  • Farke, Andrew A., Derek J. Chok, Annisa Herrero, Brandon Scolieri and Sarah Werning. (2013) Ontogeny in the tube-crested dinosaur Parasaurolophus (Hadrosauridae) and heterochrony in hadrosaurids. PeerJ 1:e182. doi:10.7717/peerj.182
  • Xing Lida, Tetsuto Miyashita, Jianping Zhang, Daqing Li, Yong Ye, Toru Sekiya, Fengping Wang & Philip J. Currie. 2015. A new sauropod dinosaur from the Late Jurassic of China and the diversity, distribution, and relationships of mamenchisaurids. Journal of Vertebrate Paleontology. doi:10.1080/02724634.2014.889701


How bigsmall was Aquilops?

December 12, 2014

Handling Aquilops by Brian Engh

Life restoration of Aquilops by Brian Engh (CC-BY).

If you’ve been reading around about Aquilops, you’ve probably seen it compared in size to a raven, a rabbit, or a cat. Where’d those comparisons come from? You’re about to find out.

Back in April I ran some numbers to get a rough idea of the size of Aquilops, both for my own interest and so we’d have some comparisons handy when the paper came out.

Archaeoceratops skeletal reconstruction by Scott Hartman. Copyright Scott Hartman, 2011, used here by permission.

Archaeoceratops skeletal reconstruction by Scott Hartman. Copyright Scott Hartman, 2011, used here by permission.

I started with the much more completely known Archaeoceratops. The measurements of Scott Hartman’s skeletal recon (shown above and on Scott’s website – thanks, Scott!) match the measurements of the Archaeo holotype given by Dodson and You (2003) almost perfectly. The total length of Archaeoceratops, including tail, is almost exactly one meter. Using graphic double integration, I got a volume of 8.88L total for a 1m Archaeoceratops. That would come down to 8.0L if the lungs occupied 10% of body volume, which is pretty standard for non-birds. So that’s about 17-18 lbs.

Archaeoceratops and Aquilops skulls to scale

Aquilops model by Garrett Stowe, photograph by Tom Luczycki, copyright and courtesy of the Sam Noble Oklahoma Museum of Natural History.

Archaeoceratops has a rostrum-jugal length of 145mm, compared to 84mm in Aquilops. Making the conservative assumption that Aquilops = Archaeoceratops*0.58, I got a body length of 60cm (about two feet), and volumes of 1.73 and 1.56 liters with and without lungs, or about 3.5 lbs in life. The internet informed me that the common raven, Corvus corax, has an adult length of 56-78 cm and a body mass of 0.7-2 kg. So, based on this admittedly tall and teetering tower of assumptions, handwaving, and wild guesses, Aquilops (the holotype individual, anyway) was about the size of a raven, in both length and mass. But ravens, although certainly well-known, are maybe a bit remote from the experience of a lot of people, so we wanted a comparison animal that more people would be familiar with. The estimated length and mass of the holotype individual of Aquilops also nicely overlap the species averages (60 cm, 1.4-2.7 kg) for the black-tailed jackrabbit, Lepus californicus, and they’re pretty close to lots of other rabbits as well, hence the comparison to bunnies.

Of course, ontogeny complicates things. Aquilops has some juvenile characters, like the big round orbit, but it doesn’t look like a hatchling. Our best guess is that it is neither a baby nor fully grown, but probably an older juvenile or young subadult. A full-grown Aquilops might have been somewhat larger, but almost certainly no larger than Archaeoceratops, and probably a meter or less in total length. So, about the size of a big housecat. That’s still pretty darned small for a non-avian dinosaur.

Although Aquilops represents everything I normally stand against – ornithischians, microvertebrates, heads – I confess that I have a sneaking affection for our wee beastie. Somebody’s just gotta make a little plush Aquilops, right? When and if that happens, you know where to find me.


Sauroposeidon in 3D

April 18, 2014

Sauroposeidon meet Sauroposeidon

I was in Oklahoma and Texas last week, seeing Sauroposeidon, Paluxysaurus, Astrophocaudia, and Alamosaurus, at the Sam Noble Oklahoma Museum of Natural History, the Fort Worth Museum of Science and History, the Shuler Museum of Paleontology at SMU, and the Perot Museum of Nature and Science, respectively. I have a ton of interesting things from that trip that I could blog about, but unfortunately I have no time. Ten days from now, I’m off to Colorado and Utah for the Mid-Mesozoic conference and field trip, and between now and then I need to finish up my bits on three collaborative papers, get my summer anatomy lectures posted for internal peer review here at WesternU, and–oh yeah–actually write my conference talk. Fun times.

BUT after being subjected to the horror of the Yale Brontosaurus skull, I figured you all deserved a little awesome.

Photographing Sauroposeidon 2014-04-07

So here’s me getting one of 351 photos of the most posterior and largest of the Sauroposeidon jackets (this is not the awesome, BTW, just a stop along the way). This jacket holds what I once inferred to be the back half of C7 and all of C8. Now that Sauroposeidon may be a somphospondyl rather than a brachiosaur, who knows what verts these are–basal somphospondyls have up to 17 cervicals to brachiosaurids’ probable 13 (for a hypothetical view of an even-longer-necked Sauroposeidon, see this probably-prophetic post by Mike). The vertically-mounted skeleton in the background is Cotylorhynchus. Cotylorhynchus got a lot bigger than that–up to maybe 6 meters long and 2 or 3 tons–and was probably the largest land animal that had ever existed back in the Early Permian. Photo by OU grad student Andrew Thomas, whom you’ll be hearing about more here in the future.

I couldn’t crank the model myself on the road, thanks to the pathetic lack of processing power in my 6-year-old laptop (which will be replaced RSN). Andy Farke volunteered to do the photogrammetricizing with Agisoft Photoscan, if only I’d DropBox him the pictures. Here’s a screenshot from MeshLab showing the result:

Sauroposeidon lateral PLY 10 - 6 and 9 blended

And my best taken-from-overhead quasi-lateral photograph:

Sauroposeidon C8 jacket lateral photo 2014-04-07

If you’re curious, the meter stick at the top is actually one meter long, it just has the English measurement side showing. The giant caliper at the bottom is also marked off in inches, and it is open to 36.0 inches (it didn’t go to 1 meter, or I would have used that). You can tell that there is some perspective distortion involved here since 36 inches on the caliper is 1380 pixels, whereas the 39.4-inch meter stick is only 1341 pixels. Man, I hate scale bars. But they make good calibration targets.

Incidentally, after playing around with the model in orthographic mode in MeshLab, the distortions in the photos of the vertebrae themselves just scream at me. Finally, finally, I can escape the tyranny of perspective. Compare the ends of the big wooden beam at the top of the jacket to get a feel for how much the two views differ.

Working on Sauroposeidon again after all this time made me seriously nostalgic. I love that beast. I don’t think I’m exaggerating when I say that those vertebrae are the most gorgeous physical objects in the universe. Also, an appropriately huge thank-you to preparator Kyle Davies (of apatosaur-sculpting fame), collections manager Jen Larsen, and Andrew Thomas again for help with wrassling those verts around, and for sharing their thoughts and advice. Thanks also to curators Rich Cifelli and Nick Czaplewski for their hospitality and for the go-ahead to undertake this work, and to Andy Farke for generating the model.

I’ll have a lot more to say about this stuff in the future. I didn’t go to all this work just for giggles. For a long time I’ve had a hankering to do a paper on the detailed anatomy of Sauroposeidon, based on all of the things that I’ve noticed in the last decade that didn’t make it into any of the early papers. And now there’s the proposed synonymy of Paluxysaurus with Sauroposeidon. And “Angloposeidon” needs some attention–Darren and I have been thinking about writing “Angloposeidon II” for years now. And…well, plenty more.

So, loads more to come, but not for the next few weeks. Eventually I’ll be publishing all of this–the photos, the 3D models, the whole works. Stay tuned.

UPDATE a few days later

Man, I am frazzled, because I forgot to include the moral of the story: if I can do this, you can do this. There are good, free photogrammetry programs out there–Peter Falkingham published a  whole paper on free photogrammetry in 2012, and posted a guide to an even better program, VisualSFM, on Academia.edu. Even Agisoft Photoscan is not prohibitively expensive–under $200 for an educational license. MeshLab is free and has hordes of good free tutorials. For the photography itself, you basically just build a virtual dome of photos around an object. If you need more instructions than that, Heinrich has written a whole series of tutorials. It doesn’t take a fancy camera–I used a point-and-shoot for the Sauroposeidon work shown here (a Canon S100 operating at 6 megapixels, if anyone is curious). What are you waiting for?

In a comment on the last post, Anonymous wrote:

I was wondering, in the course of your career, have you ever gotten tired of studying sauropods? Not to say that sauropods aren’t interesting, or that you might be losing interest in them, but have you ever looked out the window one day and gone “you know, I’m sick of working on sauropods for a while, I’d like to do some research on (say) stegosaur necks”. I ask this question because many prospective paleontologist nowadays, particularly graduate and undergraduate students, are feeling increasingly pressured towards being pigeonholed in a certain, rather small area of paleontology, e.g., tooth wear in extinct ungulates, histology in dinosaurs or therapsids, or ankle adaptations in Triassic archosaurs. In particular, many students end up working on whatever the professor they are working under gives to them as a project, and come out feeling they are so specialized in this area that they can’t work on anything else even if they wanted to. Though, in your case because sauropods exhibit such weird and diverse neck anatomy, it may not be a problem. In my case, I have been doing work on a group that is very morphologically stereotyped, and while I enjoy doing work on it, it would be nice to branch out into more diverse groups given my interesting in things like functional morphology and paleoecology. I know several other people in my research group feel the same.

I am going to answer first for myself, and then invite Mike and Darren and everyone else to share their thoughts.

For me, two things. First, I don’t always work on sauropods–I have a human anatomy paper in press, and two different projects on mammal skull osteology struggling toward publication, and a couple of bird things. You could be forgiven for thinking that sauropods are all that I do, though, since almost all of my publications to date have been on sauropods. :-) But I have been doing research on non-sauropod things that interest me for many years, they’re just taking longer to see the light of day.

Second, within the admittedly narrow field of sauropods I do many different kinds of projects. To take four consecutive papers: my part of the Brontomerus paper (Taylor et al. 2011a) was mostly writing about North American sauropod diversity in the mid-Mesozoic, whereas for the next paper (Taylor et al. 2011b) I was hacking through the sexual selection literature, and for Yates et al. (2012) I was thinking about the early evolution of pneumaticity, and for Wedel (2012) I was grappling with the internal processes of neurons. So that’s a spectrum of stuff from cell biology to biogeography–sauropodomorphs are just the thread that held all of these disparate bits together. Army ants typically have a central camp or bivouac from which they send out foraging parties in radiating directions. That’s my scientific development in a nutshell.

And I’m still pretty narrow compared to a lot of other folks. Dan Ksepka is best known for his fossil penguin work, but he also described the sauropod Erketu and has published on choristoderes, among other things. By the time he finished his dissertation, Jerry Harris had done a morphological description of a sauropod (Suuwassea) and another of a theropod (Acrocanthosaurus) and had published on pterosaurs and IIRC some other things as well. And then there’s Darren, whose remit is Tetrapoda, and not just for blogging.

One thing you wrote particularly caught my interest:

In particular, many students end up working on whatever the professor they are working under gives to them as a project, and come out feeling they are so specialized in this area that they can’t work on anything else even if they wanted to.

Really? I am having a hard time wrapping me head around that. Does “this area” not butt up against any number of others? I mean, my first project was Rich Cifelli saying, “Hey, why don’t you go identify these sauropod vertebrae?”, which metastasized into the description of Sauroposeidon. But along the way I got interested in:

  1. the diversity of Early Cretaceous North American sauropods;
  2. pneumaticity;
  3. how birds breathe (and, yes, that’s a separate topic from pneumaticity);
  4. neck muscles in birds;
  5. biomechanics and posture of sauropod necks; and
  6. all the weird stuff lurking in the OMNH collection (see for example Bonnan and Wedel 2004 and Taylor et al. 2011a).

That looked like several lifetimes’ worth of work even back in 2000, and it looks like many more now.

Now, I worry that I am sounding like a jerk, because I know–I KNOW–I was handed the most cherry planned-to-be-one-semester undergraduate research project ever. I get that, and I’m as grateful and humble about it as any naturally arrogant genius could be. But still, it seems to me that just about every project involves applying [method] to [taxon] to measure or infer [parameter], and by the time you look into applying the method to other taxa or problems, and into related or complementary or opposing methods, and into other animals that closely related to or in some way analogous to your ‘home’ taxon, and into other parameters or the same parameter in other places or times or clades, you’ve got a pretty full slate of possible things to work on–and this is just a list of areas where you have a head start because you’re already up to speed. If you want to go work on something completely different, who’s stopping you? And if you have intellectual wanderlust but don’t know what to work on, I’ve already written something that might help with that.

But maybe I am misunderstanding your complaint. If the problem is that your research project is narrow, well, that’s a common lament, but the upside is that it’s the kind of limit that might make things easier. If the OMNH crew had found any more of Sauroposeidon, it would have taken longer to prepare, and it would have been more obvious that it was new, and it would have been a lot more work. So I probably wouldn’t have been put on the project, or if I had been, it might have taken up my whole MS and kept me from working on pneumaticity. I am wondering now if a useful heuristic for student projects–or any projects, really–might be, “Keep narrowing it until it looks tractable.”

If you’re bored, start a side project. At best you’ll have a second thread of publishable work, at worst you’ll have an excellent distraction from writing up your thesis.

If the complaint is that your research project is making you too narrow, then maybe you just haven’t been at it long enough to have found all of the interesting links to other methods and taxa and parameters. But I am certain they are there. And discovering them is one of the chief joys of doing research in the first place.

So, there are my thoughts on the desirability–or inevitability–of breadth in one’s research interests. What does everyone else think?